home *** CD-ROM | disk | FTP | other *** search
/ The Atari Compendium / The Atari Compendium (Toad Computers) (1994).iso / files / umich / apps / math / gp.zoo / tex / usersch1.tex < prev    next >
LaTeX Document  |  1991-03-06  |  16.4 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 63 68 61 70 74 65 72 | 7b 4f 76 65 72 76 69 65 |\chapter|{Overvie|
|00000010| 77 20 6f 66 20 74 68 65 | 20 7b 5c 62 66 20 5c 72 |w of the| {\bf \r|
|00000020| 65 66 7b 50 41 52 49 7d | 7d 20 53 79 73 74 65 6d |ef{PARI}|} System|
|00000030| 7d 0a 0a 5c 73 65 63 74 | 69 6f 6e 7b 49 6e 74 72 |}..\sect|ion{Intr|
|00000040| 6f 64 75 63 74 69 6f 6e | 2e 7d 0a 0a 54 68 65 20 |oduction|.}..The |
|00000050| 50 41 52 49 20 73 79 73 | 74 65 6d 20 69 73 20 61 |PARI sys|tem is a|
|00000060| 20 70 61 63 6b 61 67 65 | 20 77 68 69 63 68 20 69 | package| which i|
|00000070| 73 20 63 61 70 61 62 6c | 65 20 6f 66 20 64 6f 69 |s capabl|e of doi|
|00000080| 6e 67 20 66 6f 72 6d 61 | 6c 20 63 6f 6d 70 75 74 |ng forma|l comput|
|00000090| 61 74 69 6f 6e 73 0a 6f | 6e 20 72 65 63 75 72 73 |ations.o|n recurs|
|000000a0| 69 76 65 20 74 79 70 65 | 73 20 61 74 20 68 69 67 |ive type|s at hig|
|000000b0| 68 20 73 70 65 65 64 3b | 20 69 74 20 69 73 20 70 |h speed;| it is p|
|000000c0| 72 69 6d 61 72 69 6c 79 | 20 61 69 6d 65 64 20 61 |rimarily| aimed a|
|000000d0| 74 20 6e 75 6d 62 65 72 | 0a 74 68 65 6f 72 69 73 |t number|.theoris|
|000000e0| 74 73 2c 20 62 75 74 20 | 63 61 6e 20 62 65 20 75 |ts, but |can be u|
|000000f0| 73 65 64 20 62 79 20 70 | 65 6f 70 6c 65 20 77 68 |sed by p|eople wh|
|00000100| 6f 73 65 20 70 72 69 6d | 61 72 79 20 6e 65 65 64 |ose prim|ary need|
|00000110| 20 69 73 20 73 70 65 65 | 64 2e 0a 0a 41 6c 74 68 | is spee|d...Alth|
|00000120| 6f 75 67 68 20 71 75 69 | 74 65 20 61 6e 20 61 6d |ough qui|te an am|
|00000130| 6f 75 6e 74 20 6f 66 20 | 73 79 6d 62 6f 6c 69 63 |ount of |symbolic|
|00000140| 20 6d 61 6e 69 70 75 6c | 61 74 69 6f 6e 20 69 73 | manipul|ation is|
|00000150| 20 70 6f 73 73 69 62 6c | 65 20 69 6e 20 50 41 52 | possibl|e in PAR|
|00000160| 49 2c 20 74 68 69 73 0a | 73 79 73 74 65 6d 20 64 |I, this.|system d|
|00000170| 6f 65 73 20 76 65 72 79 | 20 62 61 64 6c 79 20 63 |oes very| badly c|
|00000180| 6f 6d 70 61 72 65 64 20 | 74 6f 20 6d 75 63 68 20 |ompared |to much |
|00000190| 6d 6f 72 65 20 73 6f 70 | 68 69 73 74 69 63 61 74 |more sop|histicat|
|000001a0| 65 64 20 73 79 73 74 65 | 6d 73 20 6c 69 6b 65 0a |ed syste|ms like.|
|000001b0| 52 45 44 55 43 45 2c 20 | 4d 61 63 73 79 6d 61 2c |REDUCE, |Macsyma,|
|000001c0| 20 4d 61 70 6c 65 2c 20 | 4d 61 74 68 65 6d 61 74 | Maple, |Mathemat|
|000001d0| 69 63 61 20 6f 72 20 53 | 43 52 41 54 43 48 50 41 |ica or S|CRATCHPA|
|000001e0| 44 20 6f 6e 20 73 75 63 | 68 0a 6d 61 6e 69 70 75 |D on suc|h.manipu|
|000001f0| 6c 61 74 69 6f 6e 73 20 | 28 65 2e 67 2e 20 6d 75 |lations |(e.g. mu|
|00000200| 6c 74 69 76 61 72 69 61 | 74 65 0a 70 6f 6c 79 6e |ltivaria|te.polyn|
|00000210| 6f 6d 69 61 6c 73 2c 20 | 66 6f 72 6d 61 6c 20 69 |omials, |formal i|
|00000220| 6e 74 65 67 72 61 74 69 | 6f 6e 2c 20 65 74 63 5c |ntegrati|on, etc\|
|00000230| 64 6f 74 73 29 2e 20 4f | 6e 20 74 68 65 20 6f 74 |dots). O|n the ot|
|00000240| 68 65 72 20 68 61 6e 64 | 2c 20 74 68 65 20 74 77 |her hand|, the tw|
|00000250| 6f 0a 6d 61 69 6e 20 61 | 64 76 61 6e 74 61 67 65 |o.main a|dvantage|
|00000260| 73 20 6f 66 20 74 68 65 | 20 73 79 73 74 65 6d 20 |s of the| system |
|00000270| 69 73 20 69 74 73 20 73 | 70 65 65 64 20 28 77 68 |is its s|peed (wh|
|00000280| 69 63 68 20 63 61 6e 20 | 62 65 20 62 65 74 77 65 |ich can |be betwe|
|00000290| 65 6e 20 35 20 61 6e 64 | 0a 31 30 30 20 74 69 6d |en 5 and|.100 tim|
|000002a0| 65 73 20 62 65 74 74 65 | 72 20 6f 6e 20 6d 61 6e |es bette|r on man|
|000002b0| 79 20 63 6f 6d 70 75 74 | 61 74 69 6f 6e 73 20 74 |y comput|ations t|
|000002c0| 68 61 6e 20 74 68 65 20 | 61 62 6f 76 65 20 6d 65 |han the |above me|
|000002d0| 6e 74 69 6f 6e 65 64 20 | 73 79 73 74 65 6d 73 29 |ntioned |systems)|
|000002e0| 2c 0a 61 6e 64 20 74 68 | 65 20 70 6f 73 73 69 62 |,.and th|e possib|
|000002f0| 69 6c 69 74 79 20 6f 66 | 20 75 73 69 6e 67 20 64 |ility of| using d|
|00000300| 69 72 65 63 74 6c 79 20 | 64 61 74 61 20 74 79 70 |irectly |data typ|
|00000310| 65 73 20 77 68 69 63 68 | 20 61 72 65 20 66 61 6d |es which| are fam|
|00000320| 69 6c 69 61 72 0a 74 6f | 20 6d 61 74 68 65 6d 61 |iliar.to| mathema|
|00000330| 74 69 63 69 61 6e 73 2e | 0a 0a 49 74 20 69 73 20 |ticians.|..It is |
|00000340| 70 6f 73 73 69 62 6c 65 | 20 74 6f 20 75 73 65 20 |possible| to use |
|00000350| 50 41 52 49 20 69 6e 20 | 74 77 6f 20 64 69 66 66 |PARI in |two diff|
|00000360| 65 72 65 6e 74 20 77 61 | 79 73 3a 0a 0a 5c 71 75 |erent wa|ys:..\qu|
|00000370| 61 64 20 31 29 20 61 73 | 20 61 20 6c 69 62 72 61 |ad 1) as| a libra|
|00000380| 72 79 2c 20 77 68 69 63 | 68 20 63 61 6e 20 62 65 |ry, whic|h can be|
|00000390| 20 63 61 6c 6c 65 64 20 | 66 72 6f 6d 20 61 6e 79 | called |from any|
|000003a0| 20 75 70 70 65 72 2d 6c | 65 76 65 6c 20 6c 61 6e | upper-l|evel lan|
|000003b0| 67 75 61 67 65 0a 61 70 | 70 6c 69 63 61 74 69 6f |guage.ap|plicatio|
|000003c0| 6e 20 28 66 6f 72 20 69 | 6e 73 74 61 6e 63 65 20 |n (for i|nstance |
|000003d0| 77 72 69 74 74 65 6e 20 | 69 6e 20 43 2c 20 43 24 |written |in C, C$|
|000003e0| 2b 2b 24 2c 20 50 61 73 | 63 61 6c 20 6f 72 20 46 |++$, Pas|cal or F|
|000003f0| 6f 72 74 72 61 6e 29 3b | 0a 0a 5c 71 75 61 64 20 |ortran);|..\quad |
|00000400| 32 29 20 61 73 20 61 20 | 73 6f 70 68 69 73 74 69 |2) as a |sophisti|
|00000410| 63 61 74 65 64 20 70 72 | 6f 67 72 61 6d 6d 61 62 |cated pr|ogrammab|
|00000420| 6c 65 20 63 61 6c 63 75 | 6c 61 74 6f 72 2c 20 6e |le calcu|lator, n|
|00000430| 61 6d 65 64 20 7b 5c 62 | 66 20 47 50 7d 2c 20 77 |amed {\b|f GP}, w|
|00000440| 68 69 63 68 0a 63 6f 6e | 74 61 69 6e 73 20 6d 6f |hich.con|tains mo|
|00000450| 73 74 20 6f 66 20 74 68 | 65 20 73 74 61 6e 64 61 |st of th|e standa|
|00000460| 72 64 20 63 6f 6e 74 72 | 6f 6c 20 69 6e 73 74 72 |rd contr|ol instr|
|00000470| 75 63 74 69 6f 6e 73 20 | 6f 66 20 61 20 73 74 61 |uctions |of a sta|
|00000480| 6e 64 61 72 64 20 6c 61 | 6e 67 75 61 67 65 0a 6c |ndard la|nguage.l|
|00000490| 69 6b 65 20 43 2e 0a 0a | 54 68 65 20 75 73 65 20 |ike C...|The use |
|000004a0| 6f 66 20 47 50 20 69 73 | 20 65 78 70 6c 61 69 6e |of GP is| explain|
|000004b0| 65 64 20 69 6e 20 63 68 | 61 70 74 65 72 73 20 32 |ed in ch|apters 2|
|000004c0| 20 61 6e 64 20 33 2c 20 | 61 6e 64 20 74 68 65 20 | and 3, |and the |
|000004d0| 70 72 6f 67 72 61 6d 6d | 69 6e 67 20 69 6e 20 6c |programm|ing in l|
|000004e0| 69 62 72 61 72 79 0a 6d | 6f 64 65 20 69 73 20 65 |ibrary.m|ode is e|
|000004f0| 78 70 6c 61 69 6e 65 64 | 20 69 6e 20 63 68 61 70 |xplained| in chap|
|00000500| 74 65 72 73 20 33 20 61 | 6e 64 20 34 2e 20 49 6e |ters 3 a|nd 4. In|
|00000510| 20 74 68 65 20 70 72 65 | 73 65 6e 74 20 63 68 61 | the pre|sent cha|
|00000520| 70 74 65 72 20 31 2c 20 | 77 65 20 67 69 76 65 0a |pter 1, |we give.|
|00000530| 61 6e 20 6f 76 65 72 76 | 69 65 77 20 6f 66 20 74 |an overv|iew of t|
|00000540| 68 65 20 73 79 73 74 65 | 6d 2e 0a 0a 5c 73 75 62 |he syste|m...\sub|
|00000550| 73 65 63 74 69 74 6c 65 | 7b 49 6d 70 6c 65 6d 65 |sectitle|{Impleme|
|00000560| 6e 74 61 74 69 6f 6e 20 | 6e 6f 74 65 73 2e 7d 0a |ntation |notes.}.|
|00000570| 0a 54 68 65 20 50 41 52 | 49 20 70 61 63 6b 61 67 |.The PAR|I packag|
|00000580| 65 20 65 78 69 73 74 73 | 20 65 73 73 65 6e 74 69 |e exists| essenti|
|00000590| 61 6c 6c 79 20 69 6e 20 | 74 68 72 65 65 20 76 65 |ally in |three ve|
|000005a0| 72 73 69 6f 6e 73 2e 20 | 54 68 65 20 66 69 72 73 |rsions. |The firs|
|000005b0| 74 20 6f 6e 65 20 69 73 | 20 61 0a 73 70 65 63 69 |t one is| a.speci|
|000005c0| 66 69 63 20 69 6d 70 6c | 65 6d 65 6e 74 61 74 69 |fic impl|ementati|
|000005d0| 6f 6e 20 66 6f 72 20 36 | 38 30 32 30 2f 36 38 30 |on for 6|8020/680|
|000005e0| 33 30 2f 36 38 30 34 30 | 20 62 61 73 65 64 20 63 |30/68040| based c|
|000005f0| 6f 6d 70 75 74 65 72 73 | 20 77 68 69 63 68 20 63 |omputers| which c|
|00000600| 6f 6e 74 61 69 6e 73 20 | 61 0a 6b 65 72 6e 65 6c |ontains |a.kernel|
|00000610| 20 28 66 6f 72 0a 74 68 | 65 20 65 6c 65 6d 65 6e | (for.th|e elemen|
|00000620| 74 61 72 79 20 61 72 69 | 74 68 6d 65 74 69 63 20 |tary ari|thmetic |
|00000630| 6f 70 65 72 61 74 69 6f | 6e 73 20 6f 6e 20 6d 75 |operatio|ns on mu|
|00000640| 6c 74 69 70 72 65 63 69 | 73 65 20 69 6e 74 65 67 |ltipreci|se integ|
|00000650| 65 72 73 20 61 6e 64 20 | 72 65 61 6c 20 6e 75 6d |ers and |real num|
|00000660| 62 65 72 73 2c 0a 61 6e | 64 20 62 69 6e 61 72 79 |bers,.an|d binary|
|00000670| 2f 64 65 63 69 6d 61 6c | 20 63 6f 6e 76 65 72 73 |/decimal| convers|
|00000680| 69 6f 6e 20 72 6f 75 74 | 69 6e 65 73 29 20 65 6e |ion rout|ines) en|
|00000690| 74 69 72 65 6c 79 20 20 | 77 72 69 74 74 65 6e 20 |tirely |written |
|000006a0| 69 6e 20 4d 43 36 38 30 | 32 30 20 61 73 73 65 6d |in MC680|20 assem|
|000006b0| 62 6c 79 0a 6c 61 6e 67 | 75 61 67 65 20 28 61 72 |bly.lang|uage (ar|
|000006c0| 6f 75 6e 64 20 37 30 30 | 30 20 6c 69 6e 65 73 29 |ound 700|0 lines)|
|000006d0| 2c 20 74 68 65 20 72 65 | 73 74 20 62 65 69 6e 67 |, the re|st being|
|000006e0| 20 61 74 20 70 72 65 73 | 65 6e 74 20 65 6e 74 69 | at pres|ent enti|
|000006f0| 72 65 6c 79 20 77 72 69 | 74 74 65 6e 20 69 6e 20 |rely wri|tten in |
|00000700| 43 0a 28 61 6c 74 68 6f | 75 67 68 20 77 65 20 61 |C.(altho|ugh we a|
|00000710| 72 65 20 6e 6f 77 20 6c | 6f 6f 6b 69 6e 67 20 69 |re now l|ooking i|
|00000720| 6e 74 6f 20 43 2b 2b 29 | 2e 0a 54 68 65 20 73 79 |nto C++)|..The sy|
|00000730| 73 74 65 6d 20 72 75 6e | 73 20 6f 6e 20 53 55 4e |stem run|s on SUN|
|00000740| 2d 33 2f 78 78 2c 20 53 | 6f 6e 79 20 4e 65 77 73 |-3/xx, S|ony News|
|00000750| 2c 20 4e 65 58 54 20 63 | 75 62 65 73 20 61 6e 64 |, NeXT c|ubes and|
|00000760| 20 6f 6e 20 74 68 65 20 | 4d 61 63 69 6e 74 6f 73 | on the |Macintos|
|00000770| 68 20 49 49 2e 0a 49 74 | 20 73 68 6f 75 6c 64 20 |h II..It| should |
|00000780| 62 65 20 76 65 72 79 20 | 65 61 73 79 20 74 6f 20 |be very |easy to |
|00000790| 70 6f 72 74 20 6f 6e 20 | 61 6e 79 20 6f 74 68 65 |port on |any othe|
|000007a0| 72 20 36 38 30 78 30 20 | 62 61 73 65 64 20 6d 61 |r 680x0 |based ma|
|000007b0| 63 68 69 6e 65 0a 6c 69 | 6b 65 20 66 6f 72 20 69 |chine.li|ke for i|
|000007c0| 6e 73 74 61 6e 63 65 20 | 74 68 65 20 41 70 6f 6c |nstance |the Apol|
|000007d0| 6c 6f 20 44 6f 6d 61 69 | 6e 20 77 6f 72 6b 73 74 |lo Domai|n workst|
|000007e0| 61 74 69 6f 6e 73 2e 0a | 0a 4e 6f 74 65 20 74 68 |ations..|.Note th|
|000007f0| 61 74 20 74 68 65 20 61 | 73 73 65 6d 62 6c 79 20 |at the a|ssembly |
|00000800| 6c 61 6e 67 75 61 67 65 | 20 73 6f 75 72 63 65 20 |language| source |
|00000810| 63 6f 64 65 20 75 73 65 | 73 20 74 68 65 20 53 55 |code use|s the SU|
|00000820| 4e 20 73 79 6e 74 61 78 | 2c 0a 77 68 69 63 68 20 |N syntax|,.which |
|00000830| 66 6f 72 20 73 6f 6d 65 | 20 73 74 72 61 6e 67 65 |for some| strange|
|00000840| 20 72 65 61 73 6f 6e 20 | 64 69 66 66 65 72 73 20 | reason |differs |
|00000850| 66 72 6f 6d 20 74 68 65 | 20 4d 6f 74 6f 72 6f 6c |from the| Motorol|
|00000860| 61 20 73 74 61 6e 64 61 | 72 64 20 75 73 65 64 20 |a standa|rd used |
|00000870| 62 79 0a 6d 6f 73 74 20 | 6f 74 68 65 72 20 36 38 |by.most |other 68|
|00000880| 30 78 30 20 6d 61 63 68 | 69 6e 65 73 20 69 6e 20 |0x0 mach|ines in |
|00000890| 74 68 65 20 77 6f 72 6c | 64 2e 20 4f 6e 20 74 68 |the worl|d. On th|
|000008a0| 65 20 4d 61 63 20 49 49 | 20 64 69 73 71 75 65 74 |e Mac II| disquet|
|000008b0| 74 65 73 2c 20 77 65 20 | 68 61 76 65 0a 69 6e 63 |tes, we |have.inc|
|000008c0| 6c 75 64 65 64 20 61 20 | 70 72 6f 67 72 61 6d 20 |luded a |program |
|000008d0| 77 68 69 63 68 20 61 75 | 74 6f 6d 61 74 69 63 61 |which au|tomatica|
|000008e0| 6c 6c 79 20 63 6f 6e 76 | 65 72 74 73 0a 66 72 6f |lly conv|erts.fro|
|000008f0| 6d 20 74 68 65 20 53 55 | 4e 20 73 79 6e 74 61 78 |m the SU|N syntax|
|00000900| 20 69 6e 74 6f 20 74 68 | 65 20 73 74 61 6e 64 61 | into th|e standa|
|00000910| 72 64 20 6f 6e 65 2c 20 | 61 74 20 6c 65 61 73 74 |rd one, |at least|
|00000920| 20 66 6f 72 20 74 68 65 | 20 6e 65 65 64 65 64 20 | for the| needed |
|00000930| 50 41 52 49 0a 61 73 73 | 65 6d 62 6c 79 20 66 69 |PARI.ass|embly fi|
|00000940| 6c 65 2e 20 4f 6e 20 74 | 68 65 20 55 6e 69 78 20 |le. On t|he Unix |
|00000950| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 2c 20 77 65 |distribu|tion, we|
|00000960| 20 68 61 76 65 20 69 6e | 63 6c 75 64 65 64 20 6f | have in|cluded o|
|00000970| 74 68 65 72 20 76 65 72 | 73 69 6f 6e 73 0a 6f 66 |ther ver|sions.of|
|00000980| 20 74 68 65 20 61 73 73 | 65 6d 62 6c 79 20 66 69 | the ass|embly fi|
|00000990| 6c 65 2c 20 75 73 69 6e | 67 20 64 69 66 66 65 72 |le, usin|g differ|
|000009a0| 65 6e 74 20 73 79 6e 74 | 61 78 65 73 2e 20 0a 0a |ent synt|axes. ..|
|000009b0| 54 68 65 20 73 65 63 6f | 6e 64 20 76 65 72 73 69 |The seco|nd versi|
|000009c0| 6f 6e 20 69 73 20 61 20 | 73 70 65 63 69 66 69 63 |on is a |specific|
|000009d0| 20 69 6d 70 6c 65 6d 65 | 6e 74 61 74 69 6f 6e 20 | impleme|ntation |
|000009e0| 66 6f 72 20 53 50 41 52 | 43 20 62 61 73 65 64 20 |for SPAR|C based |
|000009f0| 77 6f 72 6b 73 74 61 74 | 69 6f 6e 73 2c 20 0a 6c |workstat|ions, .l|
|00000a00| 69 6b 65 20 74 68 65 20 | 53 50 41 52 43 73 74 61 |ike the |SPARCsta|
|00000a10| 74 69 6f 6e 20 31 2e 20 | 54 68 69 73 20 76 65 72 |tion 1. |This ver|
|00000a20| 73 69 6f 6e 20 63 6f 6e | 74 61 69 6e 73 20 6f 6e |sion con|tains on|
|00000a30| 6c 79 20 61 20 66 65 77 | 20 68 75 6e 64 72 65 64 |ly a few| hundred|
|00000a40| 20 6c 69 6e 65 73 20 6f | 66 0a 61 73 73 65 6d 62 | lines o|f.assemb|
|00000a50| 6c 79 20 63 6f 64 65 2c | 20 61 6e 64 20 69 73 20 |ly code,| and is |
|00000a60| 75 73 75 61 6c 6c 79 20 | 73 6c 69 67 68 74 6c 79 |usually |slightly|
|00000a70| 20 66 61 73 74 65 72 20 | 6f 6e 20 74 68 65 20 53 | faster |on the S|
|00000a80| 50 41 52 43 73 74 61 74 | 69 6f 6e 20 31 2b 0a 74 |PARCstat|ion 1+.t|
|00000a90| 68 61 6e 20 6f 6e 20 61 | 20 53 55 4e 2d 33 2f 36 |han on a| SUN-3/6|
|00000aa0| 30 20 6f 72 20 53 55 4e | 2d 33 2f 38 30 2e 0a 0a |0 or SUN|-3/80...|
|00000ab0| 46 69 6e 61 6c 6c 79 2c | 20 61 20 74 68 69 72 64 |Finally,| a third|
|00000ac0| 20 76 65 72 73 69 6f 6e | 20 69 73 20 77 72 69 74 | version| is writ|
|00000ad0| 74 65 6e 20 65 6e 74 69 | 72 65 6c 79 20 69 6e 20 |ten enti|rely in |
|00000ae0| 43 2c 20 61 6e 64 20 73 | 68 6f 75 6c 64 20 62 65 |C, and s|hould be|
|00000af0| 20 70 6f 72 74 61 62 6c | 65 20 77 69 74 68 0a 6e | portabl|e with.n|
|00000b00| 6f 74 20 74 6f 6f 20 6d | 75 63 68 20 74 72 6f 75 |ot too m|uch trou|
|00000b10| 62 6c 65 20 74 6f 20 61 | 6e 79 20 33 32 2d 62 69 |ble to a|ny 32-bi|
|00000b20| 74 20 63 6f 6d 70 75 74 | 65 72 20 68 61 76 69 6e |t comput|er havin|
|00000b30| 67 20 6e 6f 20 72 65 61 | 6c 20 6d 65 6d 6f 72 79 |g no rea|l memory|
|00000b40| 20 63 6f 6e 73 74 72 61 | 69 6e 74 73 0a 28 68 65 | constra|ints.(he|
|00000b50| 6e 63 65 20 7b 5c 73 6c | 20 6e 6f 74 7d 20 74 6f |nce {\sl| not} to|
|00000b60| 20 4d 53 2d 44 4f 53 20 | 73 79 73 74 65 6d 73 29 | MS-DOS |systems)|
|00000b70| 2e 20 49 74 20 69 73 20 | 61 67 61 69 6e 20 61 74 |. It is |again at|
|00000b80| 20 6c 65 61 73 74 20 32 | 20 74 69 6d 65 73 20 73 | least 2| times s|
|00000b90| 6c 6f 77 65 72 0a 74 68 | 61 6e 20 74 68 65 20 53 |lower.th|an the S|
|00000ba0| 50 41 52 43 20 76 65 72 | 73 69 6f 6e 2e 20 54 68 |PARC ver|sion. Th|
|00000bb0| 69 73 20 76 65 72 73 69 | 6f 6e 20 68 61 73 20 62 |is versi|on has b|
|00000bc0| 65 65 6e 20 74 65 73 74 | 65 64 20 66 6f 72 20 65 |een test|ed for e|
|00000bd0| 78 61 6d 70 6c 65 20 6f | 6e 20 74 68 65 0a 44 45 |xample o|n the.DE|
|00000be0| 43 73 74 61 74 69 6f 6e | 20 33 31 30 30 2e 0a 0a |Cstation| 3100...|
|00000bf0| 5c 73 65 63 74 69 6f 6e | 7b 54 68 65 20 50 41 52 |\section|{The PAR|
|00000c00| 49 20 5c 72 65 66 7b 74 | 79 70 65 73 7d 2e 7d 0a |I \ref{t|ypes}.}.|
|00000c10| 0a 54 68 65 20 63 72 75 | 63 69 61 6c 20 77 6f 72 |.The cru|cial wor|
|00000c20| 64 20 69 6e 20 50 41 52 | 49 20 69 73 20 5c 72 65 |d in PAR|I is \re|
|00000c30| 66 7b 72 65 63 75 72 73 | 69 76 69 74 79 7d 3a 20 |f{recurs|ivity}: |
|00000c40| 6d 6f 73 74 20 74 79 70 | 65 73 0a 77 68 69 63 68 |most typ|es.which|
|00000c50| 20 61 72 65 20 68 61 6e | 64 6c 65 64 20 61 72 65 | are han|dled are|
|00000c60| 20 72 65 63 75 72 73 69 | 76 65 2e 20 46 6f 72 20 | recursi|ve. For |
|00000c70| 65 78 61 6d 70 6c 65 2c | 20 74 68 65 20 62 61 73 |example,| the bas|
|00000c80| 69 63 20 74 79 70 65 20 | 7b 5c 62 66 0a 5c 72 65 |ic type |{\bf.\re|
|00000c90| 66 7b 43 6f 6d 70 6c 65 | 78 7d 7d 20 65 78 69 73 |f{Comple|x}} exis|
|00000ca0| 74 73 2e 20 48 6f 77 65 | 76 65 72 2c 20 74 68 65 |ts. Howe|ver, the|
|00000cb0| 20 63 6f 6d 70 6f 6e 65 | 6e 74 73 20 28 69 2e 65 | compone|nts (i.e|
|00000cc0| 2e 20 74 68 65 20 72 65 | 61 6c 20 61 6e 64 20 69 |. the re|al and i|
|00000cd0| 6d 61 67 69 6e 61 72 79 | 20 70 61 72 74 29 0a 6f |maginary| part).o|
|00000ce0| 66 0a 73 75 63 68 20 61 | 20 60 60 63 6f 6d 70 6c |f.such a| ``compl|
|00000cf0| 65 78 20 6e 75 6d 62 65 | 72 27 27 20 63 61 6e 20 |ex numbe|r'' can |
|00000d00| 62 65 20 6f 66 20 61 6e | 79 20 74 79 70 65 2e 20 |be of an|y type. |
|00000d10| 54 68 65 20 6f 6e 6c 79 | 20 73 65 6e 73 69 62 6c |The only| sensibl|
|00000d20| 65 20 6f 6e 65 73 20 61 | 72 65 0a 69 6e 74 65 67 |e ones a|re.integ|
|00000d30| 65 72 73 0a 28 77 65 20 | 61 72 65 20 74 68 65 6e |ers.(we |are then|
|00000d40| 20 69 6e 20 24 5c 42 62 | 62 20 5a 5b 69 5d 24 29 | in $\Bb|b Z[i]$)|
|00000d50| 2c 20 72 61 74 69 6f 6e | 61 6c 20 6e 75 6d 62 65 |, ration|al numbe|
|00000d60| 72 73 20 28 24 5c 42 62 | 62 20 51 5b 69 5d 24 29 |rs ($\Bb|b Q[i]$)|
|00000d70| 2c 20 72 65 61 6c 20 6e | 75 6d 62 65 72 73 0a 28 |, real n|umbers.(|
|00000d80| 24 5c 42 62 62 20 52 5b | 69 5d 3d 5c 42 62 62 20 |$\Bbb R[|i]=\Bbb |
|00000d90| 43 24 29 2c 20 6f 72 20 | 65 76 65 6e 20 65 6c 65 |C$), or |even ele|
|00000da0| 6d 65 6e 74 73 20 6f 66 | 20 24 5c 42 62 62 20 5a |ments of| $\Bbb Z|
|00000db0| 2f 6e 5c 42 62 62 20 5a | 24 0a 28 24 28 5c 42 62 |/n\Bbb Z|$.($(\Bb|
|00000dc0| 62 20 5a 2f 6e 5c 42 62 | 62 20 5a 29 5b 69 5d 24 |b Z/n\Bb|b Z)[i]$|
|00000dd0| 20 77 68 65 6e 20 74 68 | 69 73 20 6d 61 6b 65 73 | when th|is makes|
|00000de0| 20 73 65 6e 73 65 29 2c | 20 6f 72 20 24 70 24 2d | sense),| or $p$-|
|00000df0| 61 64 69 63 20 6e 75 6d | 62 65 72 73 20 77 68 65 |adic num|bers whe|
|00000e00| 6e 0a 24 70 5c 65 71 75 | 69 76 20 33 20 5c 6d 6f |n.$p\equ|iv 3 \mo|
|00000e10| 64 20 34 24 20 28 24 5c | 42 62 62 20 51 5f 7b 70 |d 4$ ($\|Bbb Q_{p|
|00000e20| 7d 5b 69 5d 24 29 2e 0a | 0a 54 68 69 73 20 66 65 |}[i]$)..|.This fe|
|00000e30| 61 74 75 72 65 20 6d 75 | 73 74 20 6f 66 20 63 6f |ature mu|st of co|
|00000e40| 75 72 73 65 20 6e 6f 74 | 20 62 65 20 75 73 65 64 |urse not| be used|
|00000e50| 20 74 6f 6f 20 72 61 73 | 68 6c 79 3a 20 66 6f 72 | too ras|hly: for|
|00000e60| 20 65 78 61 6d 70 6c 65 | 20 79 6f 75 0a 61 72 65 | example| you.are|
|00000e70| 20 69 6e 20 70 72 69 6e | 63 69 70 6c 65 20 61 6c | in prin|ciple al|
|00000e80| 6c 6f 77 65 64 20 74 6f | 20 63 72 65 61 74 65 20 |lowed to| create |
|00000e90| 6f 62 6a 65 63 74 73 20 | 77 68 69 63 68 20 61 72 |objects |which ar|
|00000ea0| 65 20 60 60 63 6f 6d 70 | 6c 65 78 20 6e 75 6d 62 |e ``comp|lex numb|
|00000eb0| 65 72 73 20 6f 66 0a 63 | 6f 6d 70 6c 65 78 20 6e |ers of.c|omplex n|
|00000ec0| 75 6d 62 65 72 73 27 27 | 2c 20 62 75 74 20 64 6f |umbers''|, but do|
|00000ed0| 6e 27 74 20 65 78 70 65 | 63 74 20 50 41 52 49 20 |n't expe|ct PARI |
|00000ee0| 74 6f 20 6d 61 6b 65 20 | 73 65 6e 73 69 62 6c 65 |to make |sensible|
|00000ef0| 20 75 73 65 20 6f 66 20 | 73 75 63 68 0a 6f 62 6a | use of |such.obj|
|00000f00| 65 63 74 73 3a 20 79 6f | 75 20 77 69 6c 6c 20 6d |ects: yo|u will m|
|00000f10| 61 69 6e 6c 79 20 67 65 | 74 20 6e 6f 6e 73 65 6e |ainly ge|t nonsen|
|00000f20| 73 65 2e 0a 0a 4f 6e 20 | 74 68 65 20 6f 74 68 65 |se...On |the othe|
|00000f30| 72 20 68 61 6e 64 2c 20 | 6f 6e 65 20 74 68 69 6e |r hand, |one thin|
|00000f40| 67 20 77 68 69 63 68 20 | 7b 5c 73 6c 20 69 73 5c |g which |{\sl is\|
|00000f50| 2f 7d 20 61 6c 6c 6f 77 | 65 64 20 69 73 20 74 6f |/} allow|ed is to|
|00000f60| 20 68 61 76 65 20 63 6f | 6d 70 6f 6e 65 6e 74 73 | have co|mponents|
|00000f70| 0a 6f 66 20 64 69 66 66 | 65 72 65 6e 74 2c 20 62 |.of diff|erent, b|
|00000f80| 75 74 20 63 6f 6d 70 61 | 74 69 62 6c 65 2c 20 74 |ut compa|tible, t|
|00000f90| 79 70 65 73 2e 20 46 6f | 72 20 65 78 61 6d 70 6c |ypes. Fo|r exampl|
|00000fa0| 65 2c 20 74 61 6b 69 6e | 67 20 61 67 61 69 6e 20 |e, takin|g again |
|00000fb0| 63 6f 6d 70 6c 65 78 0a | 6e 75 6d 62 65 72 73 2c |complex.|numbers,|
|00000fc0| 20 74 68 65 20 72 65 61 | 6c 20 70 61 72 74 20 63 | the rea|l part c|
|00000fd0| 6f 75 6c 64 20 62 65 20 | 6f 66 20 74 79 70 65 20 |ould be |of type |
|00000fe0| 69 6e 74 65 67 65 72 2c | 20 61 6e 64 20 74 68 65 |integer,| and the|
|00000ff0| 20 69 6d 61 67 69 6e 61 | 72 79 20 70 61 72 74 0a | imagina|ry part.|
|00001000| 6f 66 20 74 79 70 65 20 | 72 61 74 69 6f 6e 61 6c |of type |rational|
|00001010| 2e 0a 0a 42 79 20 63 6f | 6d 70 61 74 69 62 6c 65 |...By co|mpatible|
|00001020| 2c 20 77 65 20 6d 65 61 | 6e 20 74 79 70 65 73 20 |, we mea|n types |
|00001030| 77 68 69 63 68 20 63 61 | 6e 20 62 65 20 66 72 65 |which ca|n be fre|
|00001040| 65 6c 79 20 6d 69 78 65 | 64 20 69 6e 20 6f 70 65 |ely mixe|d in ope|
|00001050| 72 61 74 69 6f 6e 73 20 | 6c 69 6b 65 0a 24 2b 24 |rations |like.$+$|
|00001060| 20 6f 72 20 24 2a 24 2e | 20 46 6f 72 20 65 78 61 | or $*$.| For exa|
|00001070| 6d 70 6c 65 20 69 66 20 | 74 68 65 20 72 65 61 6c |mple if |the real|
|00001080| 20 70 61 72 74 20 69 73 | 20 6f 66 20 74 79 70 65 | part is| of type|
|00001090| 20 72 65 61 6c 2c 20 74 | 68 65 20 69 6d 61 67 69 | real, t|he imagi|
|000010a0| 6e 61 72 79 0a 70 61 72 | 74 20 63 61 6e 6e 6f 74 |nary.par|t cannot|
|000010b0| 20 62 65 20 6f 66 20 74 | 79 70 65 20 69 6e 74 65 | be of t|ype inte|
|000010c0| 67 65 72 6d 6f 64 20 28 | 69 6e 74 65 67 65 72 73 |germod (|integers|
|000010d0| 20 6d 6f 64 75 6c 6f 20 | 61 20 67 69 76 65 6e 20 | modulo |a given |
|000010e0| 6e 75 6d 62 65 72 20 24 | 6e 24 29 2e 0a 0a 4c 65 |number $|n$)...Le|
|000010f0| 74 20 75 73 20 6e 6f 77 | 20 64 65 73 63 72 69 62 |t us now| describ|
|00001100| 65 20 74 68 65 20 74 79 | 70 65 73 2e 20 41 73 20 |e the ty|pes. As |
|00001110| 65 78 70 6c 61 69 6e 65 | 64 20 61 62 6f 76 65 2c |explaine|d above,|
|00001120| 20 74 68 65 79 20 61 72 | 65 20 62 75 69 6c 74 0a | they ar|e built.|
|00001130| 72 65 63 75 72 73 69 76 | 65 6c 79 20 66 72 6f 6d |recursiv|ely from|
|00001140| 20 62 61 73 69 63 20 74 | 79 70 65 73 20 77 68 69 | basic t|ypes whi|
|00001150| 63 68 20 61 72 65 20 61 | 73 20 66 6f 6c 6c 6f 77 |ch are a|s follow|
|00001160| 73 2e 20 57 65 20 75 73 | 65 20 74 68 65 20 6c 65 |s. We us|e the le|
|00001170| 74 74 65 72 20 24 54 24 | 0a 74 6f 20 64 65 73 69 |tter $T$|.to desi|
|00001180| 67 6e 61 74 65 20 61 6e | 79 20 74 79 70 65 3b 20 |gnate an|y type; |
|00001190| 74 68 65 20 74 79 70 65 | 20 6e 75 6d 62 65 72 20 |the type| number |
|000011a0| 63 6f 72 72 65 73 70 6f | 6e 64 73 20 74 6f 20 74 |correspo|nds to t|
|000011b0| 68 65 20 69 6e 74 65 72 | 6e 61 6c 0a 72 65 70 72 |he inter|nal.repr|
|000011c0| 65 73 65 6e 74 61 74 69 | 6f 6e 20 6f 66 20 74 68 |esentati|on of th|
|000011d0| 65 20 74 79 70 65 2e 5c | 6d 65 64 73 6b 69 70 0a |e type.\|medskip.|
|000011e0| 5c 73 65 74 74 61 62 73 | 0a 5c 2b 78 78 78 26 74 |\settabs|.\+xxx&t|
|000011f0| 79 70 65 78 78 78 78 78 | 78 26 78 78 78 78 78 78 |ypexxxxx|x&xxxxxx|
|00001200| 78 78 78 78 78 78 78 78 | 78 78 78 78 78 26 78 78 |xxxxxxxx|xxxxx&xx|
|00001210| 78 78 78 78 78 78 78 78 | 78 78 78 78 78 78 78 78 |xxxxxxxx|xxxxxxxx|
|00001220| 78 78 78 78 78 78 78 78 | 78 78 78 78 78 78 78 78 |xxxxxxxx|xxxxxxxx|
|00001230| 78 78 78 78 78 78 78 0a | 78 78 78 78 78 78 78 5c |xxxxxxx.|xxxxxxx\|
|00001240| 63 72 0a 5c 2b 26 74 79 | 70 65 20 31 3a 26 20 24 |cr.\+&ty|pe 1:& $|
|00001250| 5c 42 62 62 20 5a 24 26 | 20 5c 72 65 66 7b 49 6e |\Bbb Z$&| \ref{In|
|00001260| 74 65 67 65 72 7d 73 20 | 28 77 69 74 68 20 61 72 |teger}s |(with ar|
|00001270| 62 69 74 72 61 72 79 20 | 70 72 65 63 69 73 69 6f |bitrary |precisio|
|00001280| 6e 29 5c 63 72 0a 5c 2b | 26 74 79 70 65 20 32 3a |n)\cr.\+|&type 2:|
|00001290| 26 20 24 5c 42 62 62 20 | 52 24 26 20 5c 72 65 66 |& $\Bbb |R$& \ref|
|000012a0| 7b 52 65 61 6c 20 6e 75 | 6d 62 65 72 7d 73 20 28 |{Real nu|mber}s (|
|000012b0| 77 69 74 68 20 61 72 62 | 69 74 72 61 72 79 20 70 |with arb|itrary p|
|000012c0| 72 65 63 69 73 69 6f 6e | 29 5c 63 72 0a 5c 2b 26 |recision|)\cr.\+&|
|000012d0| 74 79 70 65 20 33 3a 26 | 20 24 5c 42 62 62 20 5a |type 3:&| $\Bbb Z|
|000012e0| 2f 6e 5c 42 62 62 20 5a | 24 26 20 5c 72 65 66 7b |/n\Bbb Z|$& \ref{|
|000012f0| 49 6e 74 65 67 65 72 6d | 6f 64 7d 73 20 28 69 6e |Integerm|od}s (in|
|00001300| 74 65 67 65 72 73 20 6d | 6f 64 75 6c 6f 20 24 6e |tegers m|odulo $n|
|00001310| 24 29 5c 63 72 0a 5c 2b | 26 74 79 70 65 20 34 3a |$)\cr.\+|&type 4:|
|00001320| 26 20 24 5c 42 62 62 20 | 51 24 26 20 5c 72 65 66 |& $\Bbb |Q$& \ref|
|00001330| 7b 52 61 74 69 6f 6e 61 | 6c 20 6e 75 6d 62 65 72 |{Rationa|l number|
|00001340| 7d 73 20 28 69 6e 20 69 | 72 72 65 64 75 63 69 62 |}s (in i|rreducib|
|00001350| 6c 65 20 66 6f 72 6d 29 | 5c 63 72 0a 5c 2b 26 74 |le form)|\cr.\+&t|
|00001360| 79 70 65 20 35 3a 26 20 | 24 5c 42 62 62 20 51 24 |ype 5:& |$\Bbb Q$|
|00001370| 26 20 52 61 74 69 6f 6e | 61 6c 20 6e 75 6d 62 65 |& Ration|al numbe|
|00001380| 72 73 20 28 69 6e 20 6e | 6f 6e 20 6e 65 63 65 73 |rs (in n|on neces|
|00001390| 73 61 72 69 6c 79 20 69 | 72 72 65 64 75 63 69 62 |sarily i|rreducib|
|000013a0| 6c 65 20 66 6f 72 6d 29 | 5c 63 72 0a 5c 2b 26 74 |le form)|\cr.\+&t|
|000013b0| 79 70 65 20 36 3a 26 20 | 24 54 5b 69 5d 24 26 20 |ype 6:& |$T[i]$& |
|000013c0| 5c 72 65 66 7b 43 6f 6d | 70 6c 65 78 20 6e 75 6d |\ref{Com|plex num|
|000013d0| 62 65 72 7d 73 20 5c 63 | 72 0a 5c 2b 26 74 79 70 |ber}s \c|r.\+&typ|
|000013e0| 65 20 37 3a 26 20 24 5c | 42 62 62 20 51 5f 70 24 |e 7:& $\|Bbb Q_p$|
|000013f0| 26 20 20 24 70 24 2d 61 | 64 69 63 5c 73 72 65 66 |& $p$-a|dic\sref|
|00001400| 7b 70 2d 61 64 69 63 20 | 6e 75 6d 62 65 72 7d 20 |{p-adic |number} |
|00001410| 6e 75 6d 62 65 72 73 5c | 63 72 0a 5c 2b 26 74 79 |numbers\|cr.\+&ty|
|00001420| 70 65 20 38 3a 26 20 24 | 54 5b 77 5d 24 26 20 5c |pe 8:& $|T[w]$& \|
|00001430| 72 65 66 7b 51 75 61 64 | 72 61 74 69 63 20 6e 75 |ref{Quad|ratic nu|
|00001440| 6d 62 65 72 7d 73 20 28 | 77 68 65 72 65 20 24 5b |mber}s (|where $[|
|00001450| 5c 42 62 62 20 5a 5b 77 | 5d 3a 5c 42 62 62 20 5a |\Bbb Z[w|]:\Bbb Z|
|00001460| 5d 3d 32 24 29 5c 63 72 | 0a 5c 2b 26 74 79 70 65 |]=2$)\cr|.\+&type|
|00001470| 20 39 3a 26 20 24 54 5b | 58 5d 2f 50 28 58 29 54 | 9:& $T[|X]/P(X)T|
|00001480| 5b 58 5d 24 26 20 5c 72 | 65 66 7b 50 6f 6c 79 6d |[X]$& \r|ef{Polym|
|00001490| 6f 64 7d 73 20 28 70 6f | 6c 79 6e 6f 6d 69 61 6c |od}s (po|lynomial|
|000014a0| 73 20 6d 6f 64 75 6c 6f | 20 24 50 24 29 5c 63 72 |s modulo| $P$)\cr|
|000014b0| 0a 5c 2b 26 74 79 70 65 | 20 31 30 3a 26 20 24 54 |.\+&type| 10:& $T|
|000014c0| 5b 58 5d 24 26 20 5c 72 | 65 66 7b 50 6f 6c 79 6e |[X]$& \r|ef{Polyn|
|000014d0| 6f 6d 69 61 6c 7d 73 5c | 63 72 0a 5c 2b 26 74 79 |omial}s\|cr.\+&ty|
|000014e0| 70 65 20 31 31 3a 26 20 | 24 54 28 28 58 29 29 24 |pe 11:& |$T((X))$|
|000014f0| 26 20 5c 72 65 66 7b 50 | 6f 77 65 72 20 73 65 72 |& \ref{P|ower ser|
|00001500| 69 65 73 7d 20 28 66 69 | 6e 69 74 65 20 4c 61 75 |ies} (fi|nite Lau|
|00001510| 72 65 6e 74 20 73 65 72 | 69 65 73 29 5c 63 72 0a |rent ser|ies)\cr.|
|00001520| 5c 2b 26 74 79 70 65 20 | 31 33 3a 26 20 24 54 28 |\+&type |13:& $T(|
|00001530| 58 29 24 26 20 5c 72 65 | 66 7b 52 61 74 69 6f 6e |X)$& \re|f{Ration|
|00001540| 61 6c 20 66 75 6e 63 74 | 69 6f 6e 7d 73 20 28 69 |al funct|ion}s (i|
|00001550| 6e 20 69 72 72 65 64 75 | 63 69 62 6c 65 20 66 6f |n irredu|cible fo|
|00001560| 72 6d 29 5c 63 72 0a 5c | 2b 26 74 79 70 65 20 31 |rm)\cr.\|+&type 1|
|00001570| 34 3a 26 20 24 54 28 58 | 29 24 26 20 52 61 74 69 |4:& $T(X|)$& Rati|
|00001580| 6f 6e 61 6c 20 66 75 6e | 63 74 69 6f 6e 73 20 28 |onal fun|ctions (|
|00001590| 69 6e 20 6e 6f 6e 20 6e | 65 63 65 73 73 61 72 69 |in non n|ecessari|
|000015a0| 6c 79 20 69 72 72 65 64 | 75 63 69 62 6c 65 20 0a |ly irred|ucible .|
|000015b0| 66 6f 72 6d 29 5c 63 72 | 0a 5c 2b 26 74 79 70 65 |form)\cr|.\+&type|
|000015c0| 20 31 37 3a 26 20 24 54 | 5e 6e 24 26 20 52 6f 77 | 17:& $T|^n$& Row|
|000015d0| 20 28 69 2e 65 2e 20 68 | 6f 72 69 7a 6f 6e 74 61 | (i.e. h|orizonta|
|000015e0| 6c 29 20 5c 73 72 65 66 | 7b 52 6f 77 20 76 65 63 |l) \sref|{Row vec|
|000015f0| 74 6f 72 7d 76 65 63 74 | 6f 72 73 5c 63 72 0a 5c |tor}vect|ors\cr.\|
|00001600| 2b 26 74 79 70 65 20 31 | 38 3a 26 20 24 54 5e 6e |+&type 1|8:& $T^n|
|00001610| 24 26 20 43 6f 6c 75 6d | 6e 20 28 69 2e 65 2e 20 |$& Colum|n (i.e. |
|00001620| 76 65 72 74 69 63 61 6c | 29 20 5c 73 72 65 66 7b |vertical|) \sref{|
|00001630| 43 6f 6c 75 6d 6e 20 76 | 65 63 74 6f 72 7d 76 65 |Column v|ector}ve|
|00001640| 63 74 6f 72 73 5c 63 72 | 0a 5c 2b 26 74 79 70 65 |ctors\cr|.\+&type|
|00001650| 20 31 39 3a 26 20 24 7b | 5c 63 75 72 6c 20 4d 7d | 19:& ${|\curl M}|
|00001660| 5f 7b 6d 2c 6e 7d 28 54 | 29 24 26 20 4d 61 74 72 |_{m,n}(T|)$& Matr|
|00001670| 69 63 65 73 2e 5c 73 72 | 65 66 7b 4d 61 74 72 69 |ices.\sr|ef{Matri|
|00001680| 78 7d 5c 63 72 0a 0a 49 | 6e 20 61 64 64 69 74 69 |x}\cr..I|n additi|
|00001690| 6f 6e 2c 20 74 68 65 72 | 65 20 65 78 69 73 74 20 |on, ther|e exist |
|000016a0| 74 79 70 65 20 31 35 20 | 66 6f 72 20 62 69 6e 61 |type 15 |for bina|
|000016b0| 72 79 20 71 75 61 64 72 | 61 74 69 63 20 66 6f 72 |ry quadr|atic for|
|000016c0| 6d 73 20 6f 66 20 70 6f | 73 69 74 69 76 65 0a 64 |ms of po|sitive.d|
|000016d0| 69 73 63 72 69 6d 69 6e | 61 6e 74 2c 20 74 79 70 |iscrimin|ant, typ|
|000016e0| 65 20 31 36 20 66 6f 72 | 20 62 69 6e 61 72 79 20 |e 16 for| binary |
|000016f0| 71 75 61 64 72 61 74 69 | 63 20 66 6f 72 6d 73 20 |quadrati|c forms |
|00001700| 6f 66 20 6e 65 67 61 74 | 69 76 65 20 64 69 73 63 |of negat|ive disc|
|00001710| 72 69 6d 69 6e 61 6e 74 | 0a 5c 73 72 65 66 7b 42 |riminant|.\sref{B|
|00001720| 69 6e 61 72 79 20 71 75 | 61 64 72 61 74 69 63 20 |inary qu|adratic |
|00001730| 66 6f 72 6d 7d 0a 77 68 | 69 63 68 20 63 61 6e 20 |form}.wh|ich can |
|00001740| 62 65 20 75 73 65 64 20 | 69 6e 20 73 70 65 63 69 |be used |in speci|
|00001750| 66 69 63 20 6f 70 65 72 | 61 74 69 6f 6e 73 2c 20 |fic oper|ations, |
|00001760| 62 75 74 20 77 68 69 63 | 68 20 6d 61 79 20 64 69 |but whic|h may di|
|00001770| 73 61 70 70 65 61 72 20 | 69 6e 20 66 75 74 75 72 |sappear |in futur|
|00001780| 65 0a 76 65 72 73 69 6f | 6e 73 2c 20 68 65 6e 63 |e.versio|ns, henc|
|00001790| 65 20 74 68 65 69 72 20 | 75 73 65 20 69 73 20 6e |e their |use is n|
|000017a0| 6f 74 20 64 6f 63 75 6d | 65 6e 74 65 64 20 69 6e |ot docum|ented in|
|000017b0| 20 74 68 69 73 20 6d 61 | 6e 75 61 6c 2e 0a 0a 4c | this ma|nual...L|
|000017c0| 65 74 20 75 73 20 6c 6f | 6f 6b 20 63 6c 6f 73 65 |et us lo|ok close|
|000017d0| 6c 79 20 61 74 20 74 68 | 65 73 65 20 74 79 70 65 |ly at th|ese type|
|000017e0| 73 2e 0a 0a 5c 73 75 62 | 73 65 63 7b 49 6e 74 65 |s...\sub|sec{Inte|
|000017f0| 67 65 72 73 20 61 6e 64 | 20 72 65 61 6c 73 7d 3a |gers and| reals}:|
|00001800| 5c 73 72 65 66 7b 49 6e | 74 65 67 65 72 7d 5c 73 |\sref{In|teger}\s|
|00001810| 72 65 66 7b 52 65 61 6c | 20 6e 75 6d 62 65 72 7d |ref{Real| number}|
|00001820| 0a 74 68 65 79 20 61 72 | 65 20 6f 66 20 61 72 62 |.they ar|e of arb|
|00001830| 69 74 72 61 72 79 20 61 | 6e 64 20 76 61 72 79 69 |itrary a|nd varyi|
|00001840| 6e 67 20 6c 65 6e 67 74 | 68 0a 28 65 61 63 68 20 |ng lengt|h.(each |
|00001850| 6e 75 6d 62 65 72 20 68 | 61 76 69 6e 67 20 63 6f |number h|aving co|
|00001860| 64 65 64 0a 69 6e 74 65 | 72 6e 61 6c 6c 79 20 69 |ded.inte|rnally i|
|00001870| 74 73 20 6f 77 6e 20 6c | 65 6e 67 74 68 20 6f 72 |ts own l|ength or|
|00001880| 20 70 72 65 63 69 73 69 | 6f 6e 29 20 77 69 74 68 | precisi|on) with|
|00001890| 20 74 68 65 20 66 6f 6c | 6c 6f 77 69 6e 67 20 6d | the fol|lowing m|
|000018a0| 69 6c 64 20 72 65 73 74 | 72 69 63 74 69 6f 6e 73 |ild rest|rictions|
|000018b0| 3a 0a 69 6e 74 65 67 65 | 72 73 20 6d 75 73 74 20 |:.intege|rs must |
|000018c0| 62 65 20 69 6e 20 61 62 | 73 6f 6c 75 74 65 20 76 |be in ab|solute v|
|000018d0| 61 6c 75 65 20 6c 65 73 | 73 20 74 68 61 6e 20 24 |alue les|s than $|
|000018e0| 32 5e 7b 31 30 34 38 34 | 38 30 7d 24 20 28 69 2e |2^{10484|80}$ (i.|
|000018f0| 65 2e 20 72 6f 75 67 68 | 6c 79 0a 33 31 35 36 32 |e. rough|ly.31562|
|00001900| 33 20 64 69 67 69 74 73 | 29 2e 0a 54 68 65 20 70 |3 digits|)..The p|
|00001910| 72 65 63 69 73 69 6f 6e | 20 6f 66 20 72 65 61 6c |recision| of real|
|00001920| 20 6e 75 6d 62 65 72 73 | 20 69 73 20 61 6c 73 6f | numbers| is also|
|00001930| 20 61 74 20 6d 6f 73 74 | 20 33 31 35 36 32 33 20 | at most| 315623 |
|00001940| 73 69 67 6e 69 66 69 63 | 61 6e 74 20 64 65 63 69 |signific|ant deci|
|00001950| 6d 61 6c 0a 64 69 67 69 | 74 73 2c 20 61 6e 64 20 |mal.digi|ts, and |
|00001960| 74 68 65 0a 62 69 6e 61 | 72 79 20 65 78 70 6f 6e |the.bina|ry expon|
|00001970| 65 6e 74 20 6d 75 73 74 | 20 62 65 20 69 6e 20 61 |ent must| be in a|
|00001980| 62 73 6f 6c 75 74 65 20 | 76 61 6c 75 65 20 6c 65 |bsolute |value le|
|00001990| 73 73 20 74 68 61 6e 20 | 24 32 5e 7b 32 33 7d 3d |ss than |$2^{23}=|
|000019a0| 38 33 38 38 36 30 38 24 | 2e 0a 0a 4e 6f 74 65 20 |8388608$|...Note |
|000019b0| 74 68 61 74 20 50 41 52 | 49 20 68 61 73 20 62 65 |that PAR|I has be|
|000019c0| 65 6e 20 6f 70 74 69 6d | 69 7a 65 64 20 73 6f 20 |en optim|ized so |
|000019d0| 74 68 61 74 20 69 74 20 | 77 6f 72 6b 73 20 61 73 |that it |works as|
|000019e0| 20 66 61 73 74 20 61 73 | 20 70 6f 73 73 69 62 6c | fast as| possibl|
|000019f0| 65 20 6f 6e 0a 6e 75 6d | 62 65 72 73 20 77 69 74 |e on.num|bers wit|
|00001a00| 68 0a 34 30 20 74 6f 20 | 31 30 30 20 64 65 63 69 |h.40 to |100 deci|
|00001a10| 6d 61 6c 20 64 69 67 69 | 74 73 2e 20 49 6e 20 70 |mal digi|ts. In p|
|00001a20| 61 72 74 69 63 75 6c 61 | 72 2c 20 6e 6f 20 66 61 |articula|r, no fa|
|00001a30| 6e 63 79 20 6d 75 6c 74 | 69 70 6c 69 63 61 74 69 |ncy mult|iplicati|
|00001a40| 6f 6e 20 74 65 63 68 6e | 69 71 75 65 20 69 73 0a |on techn|ique is.|
|00001a50| 75 73 65 64 2e 0a 48 65 | 6e 63 65 2c 20 61 6c 74 |used..He|nce, alt|
|00001a60| 68 6f 75 67 68 20 69 74 | 20 69 73 20 70 6f 73 73 |hough it| is poss|
|00001a70| 69 62 6c 65 20 74 6f 20 | 75 73 65 20 50 41 52 49 |ible to |use PARI|
|00001a80| 20 74 6f 20 64 6f 20 63 | 6f 6d 70 75 74 61 74 69 | to do c|omputati|
|00001a90| 6f 6e 73 20 77 69 74 68 | 20 33 30 30 30 30 30 0a |ons with| 300000.|
|00001aa0| 64 65 63 69 6d 61 6c 20 | 64 69 67 69 74 73 2c 20 |decimal |digits, |
|00001ab0| 6d 75 63 68 20 62 65 74 | 74 65 72 20 70 72 6f 67 |much bet|ter prog|
|00001ac0| 72 61 6d 73 20 63 61 6e | 20 62 65 20 77 72 69 74 |rams can| be writ|
|00001ad0| 74 65 6e 20 66 6f 72 20 | 74 68 65 73 65 20 6c 6f |ten for |these lo|
|00001ae0| 6f 6f 6f 6e 67 20 6e 75 | 6d 62 65 72 73 2e 0a 0a |ooong nu|mbers...|
|00001af0| 49 6e 74 65 67 65 72 73 | 20 61 6e 64 20 72 65 61 |Integers| and rea|
|00001b00| 6c 20 6e 75 6d 62 65 72 | 73 20 61 72 65 20 63 6f |l number|s are co|
|00001b10| 6d 70 6c 65 74 65 6c 79 | 20 6e 6f 6e 20 72 65 63 |mpletely| non rec|
|00001b20| 75 72 73 69 76 65 20 74 | 79 70 65 73 20 61 6e 64 |ursive t|ypes and|
|00001b30| 20 61 72 65 20 73 6f 6d | 65 74 69 6d 65 73 0a 63 | are som|etimes.c|
|00001b40| 61 6c 6c 65 64 20 74 68 | 65 20 7b 5c 62 66 20 5c |alled th|e {\bf \|
|00001b50| 72 65 66 7b 6c 65 61 76 | 65 73 7d 7d 2e 0a 0a 5c |ref{leav|es}}...\|
|00001b60| 73 75 62 73 65 63 7b 49 | 6e 74 65 67 65 72 6d 6f |subsec{I|ntegermo|
|00001b70| 64 73 2c 20 72 61 74 69 | 6f 6e 61 6c 20 6e 75 6d |ds, rati|onal num|
|00001b80| 62 65 72 73 20 28 69 72 | 72 65 64 75 63 69 62 6c |bers (ir|reducibl|
|00001b90| 65 20 6f 72 20 6e 6f 74 | 29 2c 0a 24 70 24 2d 61 |e or not|),.$p$-a|
|00001ba0| 64 69 63 20 6e 75 6d 62 | 65 72 73 2c 20 70 6f 6c |dic numb|ers, pol|
|00001bb0| 79 6d 6f 64 73 2c 20 61 | 6e 64 0a 72 61 74 69 6f |ymods, a|nd.ratio|
|00001bc0| 6e 61 6c 20 66 75 6e 63 | 74 69 6f 6e 73 7d 3a 5c |nal func|tions}:\|
|00001bd0| 73 72 65 66 7b 49 6e 74 | 65 67 65 72 6d 6f 64 7d |sref{Int|egermod}|
|00001be0| 5c 73 72 65 66 7b 52 61 | 74 69 6f 6e 61 6c 20 6e |\sref{Ra|tional n|
|00001bf0| 75 6d 62 65 72 7d 5c 73 | 72 65 66 7b 70 2d 61 64 |umber}\s|ref{p-ad|
|00001c00| 69 63 20 6e 75 6d 62 65 | 72 7d 0a 5c 73 72 65 66 |ic numbe|r}.\sref|
|00001c10| 7b 50 6f 6c 79 6d 6f 64 | 7d 20 74 68 65 79 20 61 |{Polymod|} they a|
|00001c20| 72 65 20 72 65 63 75 72 | 73 69 76 65 2c 20 62 75 |re recur|sive, bu|
|00001c30| 74 20 69 6e 20 61 20 66 | 6f 72 63 65 64 20 6d 61 |t in a f|orced ma|
|00001c40| 6e 6e 65 72 3a 0a 0a 46 | 6f 72 20 69 6e 74 65 67 |nner:..F|or integ|
|00001c50| 65 72 6d 6f 64 73 20 6f | 72 20 70 6f 6c 79 6d 6f |ermods o|r polymo|
|00001c60| 64 73 2c 20 74 68 65 72 | 65 20 61 72 65 20 74 77 |ds, ther|e are tw|
|00001c70| 6f 20 63 6f 6d 70 6f 6e | 65 6e 74 73 3a 20 74 68 |o compon|ents: th|
|00001c80| 65 20 6d 6f 64 75 6c 75 | 73 2c 20 77 68 69 63 68 |e modulu|s, which|
|00001c90| 0a 6d 75 73 74 20 62 65 | 20 6f 66 20 74 79 70 65 |.must be| of type|
|00001ca0| 20 69 6e 74 65 67 65 72 | 20 28 72 65 73 70 2e 20 | integer| (resp. |
|00001cb0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 29 2c 20 61 6e 64 |polynomi|al), and|
|00001cc0| 20 74 68 65 20 6e 75 6d | 62 65 72 20 28 6f 72 20 | the num|ber (or |
|00001cd0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 29 2e 0a 0a 46 6f |polynomi|al)...Fo|
|00001ce0| 72 20 72 61 74 69 6f 6e | 61 6c 20 6e 75 6d 62 65 |r ration|al numbe|
|00001cf0| 72 73 20 6f 72 20 72 61 | 74 69 6f 6e 61 6c 20 66 |rs or ra|tional f|
|00001d00| 75 6e 63 74 69 6f 6e 73 | 2c 20 74 68 65 72 65 20 |unctions|, there |
|00001d10| 61 72 65 20 61 6c 73 6f | 20 6f 6e 6c 79 20 74 77 |are also| only tw|
|00001d20| 6f 0a 63 6f 6d 70 6f 6e | 65 6e 74 73 3a 20 74 68 |o.compon|ents: th|
|00001d30| 65 20 6e 75 6d 65 72 61 | 74 6f 72 0a 61 6e 64 20 |e numera|tor.and |
|00001d40| 74 68 65 20 64 65 6e 6f | 6d 69 6e 61 74 6f 72 2c |the deno|minator,|
|00001d50| 20 77 68 69 63 68 20 6d | 75 73 74 20 62 6f 74 68 | which m|ust both|
|00001d60| 20 62 65 20 6f 66 20 74 | 79 70 65 20 69 6e 74 65 | be of t|ype inte|
|00001d70| 67 65 72 20 28 72 65 73 | 70 2e 20 70 6f 6c 79 6e |ger (res|p. polyn|
|00001d80| 6f 6d 69 61 6c 29 2e 0a | 0a 46 69 6e 61 6c 6c 79 |omial)..|.Finally|
|00001d90| 2c 20 24 70 24 2d 61 64 | 69 63 20 6e 75 6d 62 65 |, $p$-ad|ic numbe|
|00001da0| 72 73 20 68 61 76 65 20 | 74 68 72 65 65 20 63 6f |rs have |three co|
|00001db0| 6d 70 6f 6e 65 6e 74 73 | 3a 20 74 68 65 20 70 72 |mponents|: the pr|
|00001dc0| 69 6d 65 20 24 70 24 2c | 20 74 68 65 0a 60 60 6d |ime $p$,| the.``m|
|00001dd0| 6f 64 75 6c 75 73 27 27 | 20 24 70 5e 6b 24 2c 0a |odulus''| $p^k$,.|
|00001de0| 61 6e 64 20 61 6e 20 61 | 70 70 72 6f 78 69 6d 61 |and an a|pproxima|
|00001df0| 74 69 6f 6e 20 74 6f 20 | 74 68 65 20 24 70 24 2d |tion to |the $p$-|
|00001e00| 61 64 69 63 20 6e 75 6d | 62 65 72 2e 20 48 65 72 |adic num|ber. Her|
|00001e10| 65 20 24 5c 42 62 62 20 | 5a 5f 70 24 20 69 73 20 |e $\Bbb |Z_p$ is |
|00001e20| 63 6f 6e 73 69 64 65 72 | 65 64 20 61 73 0a 24 5c |consider|ed as.$\|
|00001e30| 76 61 72 70 72 6f 6a 6c | 69 6d 20 5c 42 62 62 20 |varprojl|im \Bbb |
|00001e40| 5a 2f 70 5e 6b 5c 42 62 | 62 20 5a 24 2c 20 61 6e |Z/p^k\Bb|b Z$, an|
|00001e50| 64 20 24 5c 42 62 62 20 | 51 5f 70 24 20 61 73 20 |d $\Bbb |Q_p$ as |
|00001e60| 69 74 73 20 66 69 65 6c | 64 20 6f 66 20 66 72 61 |its fiel|d of fra|
|00001e70| 63 74 69 6f 6e 73 2e 0a | 4c 69 6b 65 20 72 65 61 |ctions..|Like rea|
|00001e80| 6c 20 6e 75 6d 62 65 72 | 73 2c 20 74 68 65 20 63 |l number|s, the c|
|00001e90| 6f 64 65 77 6f 72 64 73 | 20 63 6f 6e 74 61 69 6e |odewords| contain|
|00001ea0| 20 61 6c 73 6f 20 74 68 | 65 20 69 6e 66 6f 72 6d | also th|e inform|
|00001eb0| 61 74 69 6f 6e 20 6f 6e | 20 74 68 65 0a 70 72 65 |ation on| the.pre|
|00001ec0| 63 69 73 69 6f 6e 0a 6f | 66 20 74 68 65 20 6e 75 |cision.o|f the nu|
|00001ed0| 6d 62 65 72 20 28 77 68 | 69 63 68 20 69 73 20 69 |mber (wh|ich is i|
|00001ee0| 6e 20 66 61 63 74 20 72 | 65 64 75 6e 64 61 6e 74 |n fact r|edundant|
|00001ef0| 20 77 69 74 68 20 24 70 | 5e 6b 24 2c 20 62 75 74 | with $p|^k$, but|
|00001f00| 20 69 74 20 69 73 20 61 | 70 70 61 72 65 6e 74 6c | it is a|pparentl|
|00001f10| 79 20 6d 6f 72 65 0a 65 | 66 66 69 63 69 65 6e 74 |y more.e|fficient|
|00001f20| 20 74 6f 20 6b 65 65 70 | 20 74 68 69 73 20 72 65 | to keep| this re|
|00001f30| 64 75 6e 64 61 6e 63 79 | 29 2e 0a 0a 5c 73 75 62 |dundancy|)...\sub|
|00001f40| 73 65 63 7b 43 6f 6d 70 | 6c 65 78 20 6e 75 6d 62 |sec{Comp|lex numb|
|00001f50| 65 72 73 20 28 24 61 2b | 62 69 24 29 20 61 6e 64 |ers ($a+|bi$) and|
|00001f60| 20 71 75 61 64 72 61 74 | 69 63 20 6e 75 6d 62 65 | quadrat|ic numbe|
|00001f70| 72 73 7d 3a 20 5c 73 72 | 65 66 7b 43 6f 6d 70 6c |rs}: \sr|ef{Compl|
|00001f80| 65 78 20 6e 75 6d 62 65 | 72 7d 0a 5c 73 72 65 66 |ex numbe|r}.\sref|
|00001f90| 7b 51 75 61 64 72 61 74 | 69 63 20 6e 75 6d 62 65 |{Quadrat|ic numbe|
|00001fa0| 72 7d 71 75 61 64 72 61 | 74 69 63 20 6e 75 6d 62 |r}quadra|tic numb|
|00001fb0| 65 72 73 20 61 72 65 20 | 6e 75 6d 62 65 72 73 20 |ers are |numbers |
|00001fc0| 6f 66 20 74 68 65 20 66 | 6f 72 6d 20 24 61 2b 62 |of the f|orm $a+b|
|00001fd0| 77 24 2c 0a 77 68 65 72 | 65 20 24 77 24 20 69 73 |w$,.wher|e $w$ is|
|00001fe0| 20 73 75 63 68 20 74 68 | 61 74 20 24 5b 5c 42 62 | such th|at $[\Bb|
|00001ff0| 62 20 5a 5b 77 5d 3a 5c | 42 62 62 20 5a 5d 3d 32 |b Z[w]:\|Bbb Z]=2|
|00002000| 24 2c 20 61 6e 64 20 6d | 6f 72 65 20 70 72 65 63 |$, and m|ore prec|
|00002010| 69 73 65 6c 79 20 24 77 | 3d 5c 73 71 72 74 0a 64 |isely $w|=\sqrt.d|
|00002020| 2f 32 24 20 77 68 65 6e | 0a 24 64 5c 65 71 75 69 |/2$ when|.$d\equi|
|00002030| 76 20 30 20 5c 6d 6f 64 | 20 34 24 2c 20 61 6e 64 |v 0 \mod| 4$, and|
|00002040| 20 24 77 3d 28 31 2b 5c | 73 71 72 74 20 64 29 2f | $w=(1+\|sqrt d)/|
|00002050| 32 24 20 77 68 65 6e 20 | 24 64 5c 65 71 75 69 76 |2$ when |$d\equiv|
|00002060| 20 31 20 5c 6d 6f 64 20 | 34 24 2c 20 77 68 65 72 | 1 \mod |4$, wher|
|00002070| 65 20 24 64 24 0a 69 73 | 0a 74 68 65 20 64 69 73 |e $d$.is|.the dis|
|00002080| 63 72 69 6d 69 6e 61 6e | 74 20 6f 66 20 61 20 71 |criminan|t of a q|
|00002090| 75 61 64 72 61 74 69 63 | 20 6f 72 64 65 72 2e 0a |uadratic| order..|
|000020a0| 0a 20 43 6f 6d 70 6c 65 | 78 20 61 6e 64 20 71 75 |. Comple|x and qu|
|000020b0| 61 64 72 61 74 69 63 20 | 6e 75 6d 62 65 72 73 20 |adratic |numbers |
|000020c0| 61 72 65 20 70 61 72 74 | 69 61 6c 6c 79 20 72 65 |are part|ially re|
|000020d0| 63 75 72 73 69 76 65 3a | 20 74 68 65 20 74 77 6f |cursive:| the two|
|000020e0| 20 63 6f 6d 70 6f 6e 65 | 6e 74 73 0a 24 61 24 20 | compone|nts.$a$ |
|000020f0| 61 6e 64 20 24 62 24 20 | 63 61 6e 20 62 65 20 6f |and $b$ |can be o|
|00002100| 66 20 74 79 70 65 20 69 | 6e 74 65 67 65 72 2c 20 |f type i|nteger, |
|00002110| 72 65 61 6c 2c 20 72 61 | 74 69 6f 6e 61 6c 2c 20 |real, ra|tional, |
|00002120| 69 6e 74 65 67 65 72 6d | 6f 64 20 6f 72 20 24 70 |integerm|od or $p|
|00002130| 24 2d 61 64 69 63 2c 0a | 61 6e 64 20 63 61 6e 0a |$-adic,.|and can.|
|00002140| 62 65 20 6d 69 78 65 64 | 2c 20 73 75 62 6a 65 63 |be mixed|, subjec|
|00002150| 74 20 74 6f 20 74 68 65 | 20 6c 69 6d 69 74 61 74 |t to the| limitat|
|00002160| 69 6f 6e 73 20 6d 65 6e | 74 69 6f 6e 65 64 20 61 |ions men|tioned a|
|00002170| 62 6f 76 65 2e 20 46 6f | 72 20 65 78 61 6d 70 6c |bove. Fo|r exampl|
|00002180| 65 2c 0a 24 61 2b 62 69 | 24 20 77 69 74 68 20 24 |e,.$a+bi|$ with $|
|00002190| 61 24 20 61 6e 64 20 24 | 62 24 20 24 70 24 2d 61 |a$ and $|b$ $p$-a|
|000021a0| 64 69 63 20 69 73 20 69 | 6e 20 24 5c 42 62 62 20 |dic is i|n $\Bbb |
|000021b0| 51 5f 70 5b 69 5d 24 2c | 20 62 75 74 20 74 68 69 |Q_p[i]$,| but thi|
|000021c0| 73 20 69 73 20 65 71 75 | 61 6c 20 74 6f 0a 24 5c |s is equ|al to.$\|
|000021d0| 42 62 62 20 51 5f 70 24 | 0a 77 68 65 6e 20 24 70 |Bbb Q_p$|.when $p|
|000021e0| 5c 65 71 75 69 76 20 31 | 20 5c 6d 6f 64 20 34 24 |\equiv 1| \mod 4$|
|000021f0| 2c 20 68 65 6e 63 65 20 | 77 65 20 6d 75 73 74 20 |, hence |we must |
|00002200| 65 78 63 6c 75 64 65 20 | 74 68 65 73 65 20 24 70 |exclude |these $p|
|00002210| 24 20 77 68 65 6e 20 6f | 6e 65 20 65 78 70 6c 69 |$ when o|ne expli|
|00002220| 63 69 74 6c 79 0a 75 73 | 65 73 0a 61 20 63 6f 6d |citly.us|es.a com|
|00002230| 70 6c 65 78 20 24 70 24 | 2d 61 64 69 63 20 74 79 |plex $p$|-adic ty|
|00002240| 70 65 2e 0a 0a 5c 73 75 | 62 73 65 63 7b 50 6f 6c |pe...\su|bsec{Pol|
|00002250| 79 6e 6f 6d 69 61 6c 73 | 2c 20 70 6f 77 65 72 20 |ynomials|, power |
|00002260| 73 65 72 69 65 73 2c 20 | 76 65 63 74 6f 72 73 20 |series, |vectors |
|00002270| 61 6e 64 20 6d 61 74 72 | 69 63 65 73 7d 3a 20 0a |and matr|ices}: .|
|00002280| 5c 73 72 65 66 7b 50 6f | 6c 79 6e 6f 6d 69 61 6c |\sref{Po|lynomial|
|00002290| 7d 5c 73 72 65 66 7b 50 | 6f 77 65 72 20 73 65 72 |}\sref{P|ower ser|
|000022a0| 69 65 73 7d 5c 73 72 65 | 66 7b 56 65 63 74 6f 72 |ies}\sre|f{Vector|
|000022b0| 7d 5c 73 72 65 66 7b 4d | 61 74 72 69 78 7d 0a 74 |}\sref{M|atrix}.t|
|000022c0| 68 65 79 20 61 72 65 20 | 63 6f 6d 70 6c 65 74 65 |hey are |complete|
|000022d0| 6c 79 20 72 65 63 75 72 | 73 69 76 65 3a 0a 74 68 |ly recur|sive:.th|
|000022e0| 65 69 72 20 63 6f 6d 70 | 6f 6e 65 6e 74 73 20 63 |eir comp|onents c|
|000022f0| 61 6e 20 62 65 20 6f 66 | 20 61 6e 79 20 74 79 70 |an be of| any typ|
|00002300| 65 2c 20 61 6e 64 20 74 | 79 70 65 73 20 63 61 6e |e, and t|ypes can|
|00002310| 20 62 65 20 6d 69 78 65 | 64 0a 28 68 6f 77 65 76 | be mixe|d.(howev|
|00002320| 65 72 20 62 65 77 61 72 | 65 20 77 68 65 6e 20 64 |er bewar|e when d|
|00002330| 6f 69 6e 67 20 6f 70 65 | 72 61 74 69 6f 6e 73 29 |oing ope|rations)|
|00002340| 2e 20 4e 6f 74 65 20 69 | 6e 20 70 61 72 74 69 63 |. Note i|n partic|
|00002350| 75 6c 61 72 20 74 68 61 | 74 20 61 20 70 6f 6c 79 |ular tha|t a poly|
|00002360| 6e 6f 6d 69 61 6c 0a 69 | 6e 20 74 77 6f 20 76 61 |nomial.i|n two va|
|00002370| 72 69 61 62 6c 65 73 20 | 69 73 20 73 69 6d 70 6c |riables |is simpl|
|00002380| 79 20 61 20 70 6f 6c 79 | 6e 6f 6d 69 61 6c 20 77 |y a poly|nomial w|
|00002390| 69 74 68 20 70 6f 6c 79 | 6e 6f 6d 69 61 6c 20 63 |ith poly|nomial c|
|000023a0| 6f 65 66 66 69 63 69 65 | 6e 74 73 2e 0a 0a 4e 6f |oefficie|nts...No|
|000023b0| 74 65 20 74 68 61 74 20 | 69 6e 20 74 68 65 20 70 |te that |in the p|
|000023c0| 72 65 73 65 6e 74 20 76 | 65 72 73 69 6f 6e 20 31 |resent v|ersion 1|
|000023d0| 2e 33 35 20 6f 66 20 50 | 41 52 49 2c 20 74 68 65 |.35 of P|ARI, the|
|000023e0| 72 65 20 69 73 20 61 20 | 62 75 67 20 69 6e 20 74 |re is a |bug in t|
|000023f0| 68 65 20 68 61 6e 64 6c | 69 6e 67 0a 6f 66 20 70 |he handl|ing.of p|
|00002400| 6f 77 65 72 20 73 65 72 | 69 65 73 20 6f 66 20 70 |ower ser|ies of p|
|00002410| 6f 77 65 72 20 73 65 72 | 69 65 73 20 28 69 2e 65 |ower ser|ies (i.e|
|00002420| 2e 20 70 6f 77 65 72 20 | 73 65 72 69 65 73 20 69 |. power |series i|
|00002430| 6e 20 73 65 76 65 72 61 | 6c 20 76 61 72 69 61 62 |n severa|l variab|
|00002440| 6c 65 73 29 2e 0a 48 6f | 77 65 76 65 72 20 70 6f |les)..Ho|wever po|
|00002450| 77 65 72 20 73 65 72 69 | 65 73 20 6f 66 20 70 6f |wer seri|es of po|
|00002460| 6c 79 6e 6f 6d 69 61 6c | 73 20 28 77 68 69 63 68 |lynomial|s (which|
|00002470| 20 61 72 65 20 70 6f 77 | 65 72 20 73 65 72 69 65 | are pow|er serie|
|00002480| 73 20 69 6e 20 73 65 76 | 65 72 61 6c 0a 76 61 72 |s in sev|eral.var|
|00002490| 69 61 62 6c 65 73 20 6f | 66 20 61 20 73 70 65 63 |iables o|f a spec|
|000024a0| 69 61 6c 20 74 79 70 65 | 29 20 61 72 65 20 4f 4b |ial type|) are OK|
|000024b0| 2e 20 54 68 65 20 72 65 | 61 73 6f 6e 20 66 6f 72 |. The re|ason for|
|000024c0| 20 74 68 69 73 20 62 75 | 67 20 69 73 20 6b 6e 6f | this bu|g is kno|
|000024d0| 77 6e 2c 0a 62 75 74 20 | 69 74 20 69 73 20 64 69 |wn,.but |it is di|
|000024e0| 66 66 69 63 75 6c 74 20 | 74 6f 20 63 6f 72 72 65 |fficult |to corre|
|000024f0| 63 74 20 62 65 63 61 75 | 73 65 20 74 68 65 20 6d |ct becau|se the m|
|00002500| 61 74 68 65 6d 61 74 69 | 63 61 6c 20 70 72 6f 62 |athemati|cal prob|
|00002510| 6c 65 6d 20 69 74 73 65 | 6c 66 0a 63 6f 6e 74 61 |lem itse|lf.conta|
|00002520| 69 6e 73 20 73 6f 6d 65 | 20 61 6d 6f 75 6e 74 20 |ins some| amount |
|00002530| 6f 66 20 69 6d 70 72 65 | 63 69 73 69 6f 6e 2e 0a |of impre|cision..|
|00002540| 0a 5c 73 75 62 73 65 63 | 7b 45 78 61 63 74 20 61 |.\subsec|{Exact a|
|00002550| 6e 64 20 69 6d 70 72 65 | 63 69 73 65 20 6f 62 6a |nd impre|cise obj|
|00002560| 65 63 74 73 7d 3a 20 5c | 73 72 65 66 7b 69 6d 70 |ects}: \|sref{imp|
|00002570| 72 65 63 69 73 65 20 6f | 62 6a 65 63 74 7d 77 65 |recise o|bject}we|
|00002580| 20 68 61 76 65 20 61 6c | 72 65 61 64 79 0a 73 61 | have al|ready.sa|
|00002590| 69 64 20 74 68 61 74 20 | 69 6e 74 65 67 65 72 73 |id that |integers|
|000025a0| 20 61 6e 64 20 72 65 61 | 6c 73 20 61 72 65 20 63 | and rea|ls are c|
|000025b0| 61 6c 6c 65 64 20 74 68 | 65 20 5c 72 65 66 7b 6c |alled th|e \ref{l|
|000025c0| 65 61 76 65 73 7d 20 62 | 65 63 61 75 73 65 20 74 |eaves} b|ecause t|
|000025d0| 68 65 79 20 61 72 65 0a | 75 6c 74 69 6d 61 74 65 |hey are.|ultimate|
|000025e0| 6c 79 0a 61 74 20 74 68 | 65 20 65 6e 64 20 6f 66 |ly.at th|e end of|
|000025f0| 20 65 76 65 72 79 20 62 | 72 61 6e 63 68 20 6f 66 | every b|ranch of|
|00002600| 20 61 20 74 72 65 65 20 | 72 65 70 72 65 73 65 6e | a tree |represen|
|00002610| 74 69 6e 67 20 61 20 50 | 41 52 49 20 6f 62 6a 65 |ting a P|ARI obje|
|00002620| 63 74 2e 20 41 6e 6f 74 | 68 65 72 0a 69 6d 70 6f |ct. Anot|her.impo|
|00002630| 72 74 61 6e 74 20 6e 6f | 74 69 6f 6e 20 69 73 20 |rtant no|tion is |
|00002640| 74 68 61 74 20 6f 66 20 | 61 6e 20 7b 5c 62 66 20 |that of |an {\bf |
|00002650| 5c 72 65 66 7b 65 78 61 | 63 74 20 6f 62 6a 65 63 |\ref{exa|ct objec|
|00002660| 74 7d 7d 3a 20 62 79 20 | 64 65 66 69 6e 69 74 69 |t}}: by |definiti|
|00002670| 6f 6e 2c 0a 6e 75 6d 62 | 65 72 73 20 6f 66 20 62 |on,.numb|ers of b|
|00002680| 61 73 69 63 20 74 79 70 | 65 20 72 65 61 6c 2c 20 |asic typ|e real, |
|00002690| 24 70 24 2d 61 64 69 63 | 20 6f 72 20 70 6f 77 65 |$p$-adic| or powe|
|000026a0| 72 20 73 65 72 69 65 73 | 20 61 72 65 20 69 6d 70 |r series| are imp|
|000026b0| 72 65 63 69 73 65 2c 20 | 61 6e 64 20 77 65 0a 77 |recise, |and we.w|
|000026c0| 69 6c 6c 0a 73 61 79 20 | 74 68 61 74 20 61 20 50 |ill.say |that a P|
|000026d0| 41 52 49 20 6f 62 6a 65 | 63 74 20 68 61 76 69 6e |ARI obje|ct havin|
|000026e0| 67 20 6f 6e 65 20 6f 66 | 20 74 68 65 73 65 20 69 |g one of| these i|
|000026f0| 6d 70 72 65 63 69 73 65 | 20 74 79 70 65 73 20 61 |mprecise| types a|
|00002700| 6e 79 77 68 65 72 65 20 | 69 6e 20 69 74 73 0a 74 |nywhere |in its.t|
|00002710| 72 65 65 0a 69 73 20 6e | 6f 74 20 65 78 61 63 74 |ree.is n|ot exact|
|00002720| 2e 20 41 6c 6c 20 6f 74 | 68 65 72 20 50 41 52 49 |. All ot|her PARI|
|00002730| 20 6f 62 6a 65 63 74 73 | 20 77 69 6c 6c 20 62 65 | objects| will be|
|00002740| 20 63 61 6c 6c 65 64 20 | 65 78 61 63 74 2e 20 54 | called |exact. T|
|00002750| 68 69 73 20 69 73 20 61 | 20 76 65 72 79 0a 69 6d |his is a| very.im|
|00002760| 70 6f 72 74 61 6e 74 20 | 6e 6f 74 69 6f 6e 20 73 |portant |notion s|
|00002770| 69 6e 63 65 20 6e 6f 20 | 6e 75 6d 65 72 69 63 61 |ince no |numerica|
|00002780| 6c 20 61 6e 61 6c 79 73 | 69 73 20 69 73 20 69 6e |l analys|is is in|
|00002790| 76 6f 6c 76 65 64 20 77 | 68 65 6e 20 64 65 61 6c |volved w|hen deal|
|000027a0| 69 6e 67 20 77 69 74 68 | 0a 65 78 61 63 74 20 6f |ing with|.exact o|
|000027b0| 62 6a 65 63 74 73 2e 0a | 0a 5c 73 75 62 73 65 63 |bjects..|.\subsec|
|000027c0| 7b 57 68 61 74 20 69 73 | 20 5c 72 65 66 7b 7a 65 |{What is| \ref{ze|
|000027d0| 72 6f 7d 3f 7d 3a 20 74 | 68 69 73 20 69 73 20 61 |ro}?}: t|his is a|
|000027e0| 20 63 72 75 63 69 61 6c | 20 71 75 65 73 74 69 6f | crucial| questio|
|000027f0| 6e 20 69 6e 20 61 6c 6c | 20 63 6f 6d 70 75 74 65 |n in all| compute|
|00002800| 72 0a 73 79 73 74 65 6d | 73 2e 20 54 68 65 20 61 |r.system|s. The a|
|00002810| 6e 73 77 65 72 20 77 65 | 20 67 69 76 65 20 69 6e |nswer we| give in|
|00002820| 20 50 41 52 49 20 69 73 | 20 74 68 65 20 66 6f 6c | PARI is| the fol|
|00002830| 6c 6f 77 69 6e 67 2e 20 | 46 6f 72 20 65 78 61 63 |lowing. |For exac|
|00002840| 74 20 74 79 70 65 73 2c | 0a 61 6c 6c 20 7a 65 72 |t types,|.all zer|
|00002850| 6f 73 20 61 72 65 20 65 | 71 75 69 76 61 6c 65 6e |os are e|quivalen|
|00002860| 74 20 61 6e 64 20 61 72 | 65 20 65 78 61 63 74 2c |t and ar|e exact,|
|00002870| 20 73 6f 20 61 72 65 20 | 75 73 75 61 6c 6c 79 20 | so are |usually |
|00002880| 72 65 70 72 65 73 65 6e | 74 65 64 20 61 73 0a 61 |represen|ted as.a|
|00002890| 6e 20 69 6e 74 65 67 65 | 72 20 7a 65 72 6f 2e 20 |n intege|r zero. |
|000028a0| 54 68 65 20 70 72 6f 62 | 6c 65 6d 20 62 65 63 6f |The prob|lem beco|
|000028b0| 6d 65 73 0a 6e 6f 6e 74 | 72 69 76 69 61 6c 20 66 |mes.nont|rivial f|
|000028c0| 6f 72 20 69 6d 70 72 65 | 63 69 73 65 20 74 79 70 |or impre|cise typ|
|000028d0| 65 73 2e 20 46 6f 72 20 | 24 70 24 2d 61 64 69 63 |es. For |$p$-adic|
|000028e0| 73 20 74 68 65 20 61 6e | 73 77 65 72 20 69 73 20 |s the an|swer is |
|000028f0| 61 73 0a 66 6f 6c 6c 6f | 77 73 3a 20 65 76 65 72 |as.follo|ws: ever|
|00002900| 79 20 24 70 24 2d 61 64 | 69 63 20 6e 75 6d 62 65 |y $p$-ad|ic numbe|
|00002910| 72 20 28 69 6e 63 6c 75 | 64 69 6e 67 20 30 29 20 |r (inclu|ding 0) |
|00002920| 68 61 73 20 61 6e 20 65 | 78 70 6f 6e 65 6e 74 20 |has an e|xponent |
|00002930| 24 65 24 20 61 6e 64 20 | 61 0a 60 60 6d 61 6e 74 |$e$ and |a.``mant|
|00002940| 69 73 73 61 27 27 20 24 | 75 24 20 77 68 69 63 68 |issa'' $|u$ which|
|00002950| 20 69 73 20 61 20 24 70 | 24 2d 61 64 69 63 20 75 | is a $p|$-adic u|
|00002960| 6e 69 74 2c 20 65 78 63 | 65 70 74 20 77 68 65 6e |nit, exc|ept when|
|00002970| 20 74 68 65 20 6e 75 6d | 62 65 72 20 69 73 20 7a | the num|ber is z|
|00002980| 65 72 6f 20 28 69 6e 0a | 77 68 69 63 68 20 63 61 |ero (in.|which ca|
|00002990| 73 65 20 24 75 24 20 69 | 73 20 7a 65 72 6f 29 2c |se $u$ i|s zero),|
|000029a0| 20 74 68 65 20 6d 61 6e | 74 69 73 73 61 20 68 61 | the man|tissa ha|
|000029b0| 76 69 6e 67 20 61 20 63 | 65 72 74 61 69 6e 20 60 |ving a c|ertain `|
|000029c0| 60 70 72 65 63 69 73 69 | 6f 6e 27 27 20 24 6b 24 |`precisi|on'' $k$|
|000029d0| 20 28 69 2e 65 2e 0a 69 | 73 20 64 65 66 69 6e 65 | (i.e..i|s define|
|000029e0| 64 20 6d 6f 64 75 6c 6f | 20 24 70 5e 6b 24 29 2e |d modulo| $p^k$).|
|000029f0| 20 54 68 65 6e 20 74 68 | 69 73 20 24 70 24 2d 61 | Then th|is $p$-a|
|00002a00| 64 69 63 20 7a 65 72 6f | 20 69 73 20 75 6e 64 65 |dic zero| is unde|
|00002a10| 72 73 74 6f 6f 64 20 74 | 6f 20 62 65 0a 65 71 75 |rstood t|o be.equ|
|00002a20| 61 6c 20 74 6f 20 24 4f | 28 70 5e 65 29 24 2c 20 |al to $O|(p^e)$, |
|00002a30| 69 2e 65 2e 20 74 68 65 | 72 65 20 69 73 20 61 6e |i.e. the|re is an|
|00002a40| 20 69 6e 66 69 6e 69 74 | 65 20 6e 75 6d 62 65 72 | infinit|e number|
|00002a50| 20 6f 66 20 7a 65 72 6f | 73 2e 20 54 68 65 20 6e | of zero|s. The n|
|00002a60| 75 6d 62 65 72 20 24 6b | 24 0a 69 73 20 74 68 75 |umber $k|$.is thu|
|00002a70| 73 20 69 72 72 65 6c 65 | 76 61 6e 74 2e 0a 0a 46 |s irrele|vant...F|
|00002a80| 6f 72 20 70 6f 77 65 72 | 20 73 65 72 69 65 73 20 |or power| series |
|00002a90| 74 68 65 20 73 69 74 75 | 61 74 69 6f 6e 20 69 73 |the situ|ation is|
|00002aa0| 20 73 69 6d 69 6c 61 72 | 2c 20 77 69 74 68 20 24 | similar|, with $|
|00002ab0| 70 24 20 72 65 70 6c 61 | 63 65 64 0a 62 79 20 24 |p$ repla|ced.by $|
|00002ac0| 58 24 2c 20 69 2e 65 2e | 20 61 20 70 6f 77 65 72 |X$, i.e.| a power|
|00002ad0| 20 73 65 72 69 65 73 20 | 7a 65 72 6f 20 77 69 6c | series |zero wil|
|00002ae0| 6c 20 62 65 20 24 4f 28 | 58 5e 65 29 24 2c 20 74 |l be $O(|X^e)$, t|
|00002af0| 68 65 20 6e 75 6d 62 65 | 72 20 24 6b 24 20 28 68 |he numbe|r $k$ (h|
|00002b00| 65 72 65 20 74 68 65 0a | 6c 65 6e 67 74 68 20 6f |ere the.|length o|
|00002b10| 66 20 74 68 65 20 70 6f | 77 65 72 20 73 65 72 69 |f the po|wer seri|
|00002b20| 65 73 29 20 62 65 69 6e | 67 20 61 6c 73 6f 20 69 |es) bein|g also i|
|00002b30| 72 72 65 6c 65 76 61 6e | 74 2e 0a 0a 46 6f 72 20 |rrelevan|t...For |
|00002b40| 72 65 61 6c 20 6e 75 6d | 62 65 72 73 2c 20 74 68 |real num|bers, th|
|00002b50| 65 20 70 72 65 63 69 73 | 69 6f 6e 20 24 6b 24 20 |e precis|ion $k$ |
|00002b60| 69 73 20 61 6c 73 6f 20 | 69 72 72 65 6c 65 76 61 |is also |irreleva|
|00002b70| 6e 74 2c 0a 61 6e 64 20 | 61 20 72 65 61 6c 20 7a |nt,.and |a real z|
|00002b80| 65 72 6f 20 77 69 6c 6c | 20 69 6e 20 66 61 63 74 |ero will| in fact|
|00002b90| 20 62 65 20 24 4f 28 32 | 5e 65 29 24 20 77 68 65 | be $O(2|^e)$ whe|
|00002ba0| 72 65 20 24 65 24 20 69 | 73 20 6e 6f 77 20 75 73 |re $e$ i|s now us|
|00002bb0| 75 61 6c 6c 79 20 61 0a | 6e 65 67 61 74 69 76 65 |ually a.|negative|
|00002bc0| 20 62 69 6e 61 72 79 20 | 65 78 70 6f 6e 65 6e 74 | binary |exponent|
|00002bd0| 2e 20 54 68 69 73 20 6f | 66 20 63 6f 75 72 73 65 |. This o|f course|
|00002be0| 20 77 69 6c 6c 20 62 65 | 20 70 72 69 6e 74 65 64 | will be| printed|
|00002bf0| 20 61 73 20 75 73 75 61 | 6c 20 66 6f 72 0a 61 20 | as usua|l for.a |
|00002c00| 72 65 61 6c 20 6e 75 6d | 62 65 72 20 28 24 30 2e |real num|ber ($0.|
|00002c10| 30 30 30 30 5c 63 64 6f | 74 73 24 20 69 6e 20 7b |0000\cdo|ts$ in {|
|00002c20| 5c 74 74 20 66 7d 20 66 | 6f 72 6d 61 74 20 6f 72 |\tt f} f|ormat or|
|00002c30| 20 24 30 2e 45 78 78 24 | 20 69 6e 20 7b 5c 74 74 | $0.Exx$| in {\tt|
|00002c40| 20 65 7d 20 66 6f 72 6d | 61 74 29 0a 61 6e 64 20 | e} form|at).and |
|00002c50| 6e 6f 74 20 77 69 74 68 | 20 61 20 24 4f 28 29 24 |not with| a $O()$|
|00002c60| 20 73 79 6d 62 6f 6c 20 | 61 73 20 77 69 74 68 20 | symbol |as with |
|00002c70| 24 70 24 2d 61 64 69 63 | 73 20 6f 72 20 70 6f 77 |$p$-adic|s or pow|
|00002c80| 65 72 20 73 65 72 69 65 | 73 2e 0a 0a 5c 73 75 62 |er serie|s...\sub|
|00002c90| 73 65 63 7b 53 63 61 6c | 61 72 20 74 79 70 65 73 |sec{Scal|ar types|
|00002ca0| 7d 3a 5c 73 72 65 66 7b | 73 63 61 6c 61 72 20 74 |}:\sref{|scalar t|
|00002cb0| 79 70 65 7d 20 62 61 73 | 69 63 20 74 79 70 65 73 |ype} bas|ic types|
|00002cc0| 20 77 69 74 68 20 74 79 | 70 65 20 6e 75 6d 62 65 | with ty|pe numbe|
|00002cd0| 72 20 6c 65 73 73 20 74 | 68 61 6e 20 6f 72 20 65 |r less t|han or e|
|00002ce0| 71 75 61 6c 0a 74 6f 20 | 39 20 77 69 6c 6c 20 62 |qual.to |9 will b|
|00002cf0| 65 20 63 61 6c 6c 65 64 | 20 73 63 61 6c 61 72 20 |e called| scalar |
|00002d00| 74 79 70 65 73 20 62 65 | 63 61 75 73 65 20 74 68 |types be|cause th|
|00002d10| 65 79 20 65 73 73 65 6e | 74 69 61 6c 6c 79 20 6f |ey essen|tially o|
|00002d20| 63 63 75 72 20 61 73 0a | 63 6f 65 66 66 69 63 69 |ccur as.|coeffici|
|00002d30| 65 6e 74 73 20 6f 66 20 | 73 6f 6d 65 20 6d 6f 72 |ents of |some mor|
|00002d40| 65 20 63 6f 6d 70 6c 69 | 63 61 74 65 64 20 6f 62 |e compli|cated ob|
|00002d50| 6a 65 63 74 2e 20 4e 6f | 74 65 20 74 68 61 74 20 |ject. No|te that |
|00002d60| 74 79 70 65 20 39 2c 20 | 69 2e 65 2e 20 70 6f 6c |type 9, |i.e. pol|
|00002d70| 79 6d 6f 64 2c 0a 69 73 | 20 75 73 65 64 20 74 6f |ymod,.is| used to|
|00002d80| 20 64 65 66 69 6e 65 20 | 61 6c 67 65 62 72 61 69 | define |algebrai|
|00002d90| 63 20 65 78 74 65 6e 73 | 69 6f 6e 73 20 6f 66 20 |c extens|ions of |
|00002da0| 61 20 62 61 73 65 20 72 | 69 6e 67 2c 20 61 6e 64 |a base r|ing, and|
|00002db0| 20 61 73 20 73 75 63 68 | 20 69 73 0a 61 20 73 63 | as such| is.a sc|
|00002dc0| 61 6c 61 72 20 74 79 70 | 65 2e 0a 0a 5c 73 65 63 |alar typ|e...\sec|
|00002dd0| 74 69 6f 6e 7b 4f 70 65 | 72 61 74 69 6f 6e 73 20 |tion{Ope|rations |
|00002de0| 61 6e 64 20 66 75 6e 63 | 74 69 6f 6e 73 2e 7d 0a |and func|tions.}.|
|00002df0| 0a 5c 73 75 62 73 65 63 | 7b 54 68 65 20 50 41 52 |.\subsec|{The PAR|
|00002e00| 49 20 70 68 69 6c 6f 73 | 6f 70 68 79 7d 2e 0a 54 |I philos|ophy}..T|
|00002e10| 68 65 20 62 61 73 69 63 | 20 70 68 69 6c 6f 73 6f |he basic| philoso|
|00002e20| 70 68 79 20 77 68 69 63 | 68 20 67 6f 76 65 72 6e |phy whic|h govern|
|00002e30| 73 20 50 41 52 49 20 69 | 73 20 74 68 61 74 20 6f |s PARI i|s that o|
|00002e40| 70 65 72 61 74 69 6f 6e | 73 20 61 6e 64 20 66 75 |peration|s and fu|
|00002e50| 6e 63 74 69 6f 6e 73 0a | 73 68 6f 75 6c 64 20 66 |nctions.|should f|
|00002e60| 69 72 73 74 20 67 69 76 | 65 20 61 73 20 65 78 61 |irst giv|e as exa|
|00002e70| 63 74 20 61 20 72 65 73 | 75 6c 74 20 61 73 20 70 |ct a res|ult as p|
|00002e80| 6f 73 73 69 62 6c 65 2c | 20 61 6e 64 20 73 65 63 |ossible,| and sec|
|00002e90| 6f 6e 64 2c 20 62 65 20 | 70 65 72 6d 69 74 74 65 |ond, be |permitte|
|00002ea0| 64 0a 69 66 20 74 68 65 | 79 20 6d 61 6b 65 20 61 |d.if the|y make a|
|00002eb0| 6e 79 20 6b 69 6e 64 20 | 6f 66 20 73 65 6e 73 65 |ny kind |of sense|
|00002ec0| 2e 0a 0a 4d 6f 72 65 20 | 73 70 65 63 69 66 69 63 |...More |specific|
|00002ed0| 61 6c 6c 79 2c 20 69 66 | 20 79 6f 75 20 64 6f 20 |ally, if| you do |
|00002ee0| 61 6e 20 6f 70 65 72 61 | 74 69 6f 6e 20 28 6e 6f |an opera|tion (no|
|00002ef0| 74 20 61 20 74 72 61 6e | 73 63 65 6e 64 65 6e 74 |t a tran|scendent|
|00002f00| 61 6c 20 6f 6e 65 29 0a | 62 65 74 77 65 65 6e 20 |al one).|between |
|00002f10| 65 78 61 63 74 20 6f 62 | 6a 65 63 74 73 2c 20 79 |exact ob|jects, y|
|00002f20| 6f 75 20 77 69 6c 6c 20 | 67 65 74 20 61 6e 20 65 |ou will |get an e|
|00002f30| 78 61 63 74 20 6f 62 6a | 65 63 74 2e 20 46 6f 72 |xact obj|ect. For|
|00002f40| 20 65 78 61 6d 70 6c 65 | 2c 0a 64 69 76 69 64 69 | example|,.dividi|
|00002f50| 6e 67 20 31 20 62 79 20 | 33 20 64 6f 65 73 20 6e |ng 1 by |3 does n|
|00002f60| 6f 74 20 67 69 76 65 20 | 24 30 2e 33 33 33 33 33 |ot give |$0.33333|
|00002f70| 5c 63 64 6f 74 73 24 20 | 61 73 20 79 6f 75 20 63 |\cdots$ |as you c|
|00002f80| 6f 75 6c 64 20 65 78 70 | 65 63 74 2c 0a 62 75 74 |ould exp|ect,.but|
|00002f90| 20 73 69 6d 70 6c 79 20 | 74 68 65 20 72 61 74 69 | simply |the rati|
|00002fa0| 6f 6e 61 6c 20 6e 75 6d | 62 65 72 20 24 28 31 2f |onal num|ber $(1/|
|00002fb0| 33 29 24 2e 20 49 66 20 | 79 6f 75 20 72 65 61 6c |3)$. If |you real|
|00002fc0| 6c 79 20 77 61 6e 74 20 | 74 68 65 20 72 65 73 75 |ly want |the resu|
|00002fd0| 6c 74 0a 69 6e 20 74 79 | 70 65 20 72 65 61 6c 2c |lt.in ty|pe real,|
|00002fe0| 20 65 76 61 6c 75 61 74 | 65 20 24 31 2e 2f 33 24 | evaluat|e $1./3$|
|00002ff0| 20 6f 72 20 61 64 64 20 | 24 30 2e 24 20 74 6f 20 | or add |$0.$ to |
|00003000| 24 28 31 2f 33 29 24 2e | 0a 0a 54 68 65 20 72 65 |$(1/3)$.|..The re|
|00003010| 73 75 6c 74 20 6f 66 20 | 6f 70 65 72 61 74 69 6f |sult of |operatio|
|00003020| 6e 73 20 62 65 74 77 65 | 65 6e 20 69 6d 70 72 65 |ns betwe|en impre|
|00003030| 63 69 73 65 20 6f 62 6a | 65 63 74 73 20 77 69 6c |cise obj|ects wil|
|00003040| 6c 20 62 65 20 61 73 20 | 70 72 65 63 69 73 65 0a |l be as |precise.|
|00003050| 61 73 20 70 6f 73 73 69 | 62 6c 65 2e 20 43 6f 6e |as possi|ble. Con|
|00003060| 73 69 64 65 72 20 66 6f | 72 20 65 78 61 6d 70 6c |sider fo|r exampl|
|00003070| 65 20 6f 6e 65 20 6f 66 | 20 74 68 65 20 6d 6f 73 |e one of| the mos|
|00003080| 74 20 64 69 66 66 69 63 | 75 6c 74 20 63 61 73 65 |t diffic|ult case|
|00003090| 73 2c 20 74 68 61 74 20 | 69 73 0a 74 68 65 20 61 |s, that |is.the a|
|000030a0| 64 64 69 74 69 6f 6e 20 | 6f 66 20 74 77 6f 20 72 |ddition |of two r|
|000030b0| 65 61 6c 20 6e 75 6d 62 | 65 72 73 20 24 78 24 20 |eal numb|ers $x$ |
|000030c0| 61 6e 64 20 24 79 24 2e | 20 54 68 65 20 5c 72 65 |and $y$.| The \re|
|000030d0| 66 7b 61 63 63 75 72 61 | 63 79 7d 20 6f 66 20 74 |f{accura|cy} of t|
|000030e0| 68 65 20 72 65 73 75 6c | 74 20 69 73 0a 7b 5c 69 |he resul|t is.{\i|
|000030f0| 74 20 61 20 70 72 69 6f | 72 69 5c 2f 7d 20 75 6e |t a prio|ri\/} un|
|00003100| 70 72 65 64 69 63 74 61 | 62 6c 65 3b 20 69 74 20 |predicta|ble; it |
|00003110| 64 65 70 65 6e 64 73 20 | 6f 6e 20 74 68 65 20 70 |depends |on the p|
|00003120| 72 65 63 69 73 69 6f 6e | 73 20 6f 66 20 24 78 24 |recision|s of $x$|
|00003130| 20 61 6e 64 20 24 79 24 | 2c 20 6f 6e 0a 74 68 65 | and $y$|, on.the|
|00003140| 69 72 20 73 69 7a 65 73 | 20 28 69 2e 65 2e 20 74 |ir sizes| (i.e. t|
|00003150| 68 65 69 72 20 65 78 70 | 6f 6e 65 6e 74 73 29 2c |heir exp|onents),|
|00003160| 20 61 6e 64 20 61 6c 73 | 6f 20 6f 6e 20 74 68 65 | and als|o on the|
|00003170| 20 73 69 7a 65 20 6f 66 | 20 24 78 2b 79 24 2e 20 | size of| $x+y$. |
|00003180| 50 41 52 49 0a 77 6f 72 | 6b 73 20 6f 75 74 20 61 |PARI.wor|ks out a|
|00003190| 75 74 6f 6d 61 74 69 63 | 61 6c 6c 79 20 74 68 65 |utomatic|ally the|
|000031a0| 20 72 69 67 68 74 20 70 | 72 65 63 69 73 69 6f 6e | right p|recision|
|000031b0| 20 66 6f 72 20 74 68 65 | 20 72 65 73 75 6c 74 2c | for the| result,|
|000031c0| 20 65 76 65 6e 20 77 68 | 65 6e 20 69 74 0a 69 73 | even wh|en it.is|
|000031d0| 20 77 6f 72 6b 69 6e 67 | 20 69 6e 20 63 61 6c 63 | working| in calc|
|000031e0| 75 6c 61 74 6f 72 20 6d | 6f 64 65 20 47 50 20 77 |ulator m|ode GP w|
|000031f0| 68 65 72 65 20 74 68 65 | 72 65 20 69 73 20 61 20 |here the|re is a |
|00003200| 5c 72 65 66 7b 64 65 66 | 61 75 6c 74 20 70 72 65 |\ref{def|ault pre|
|00003210| 63 69 73 69 6f 6e 7d 2e | 0a 53 65 65 20 74 68 65 |cision}.|.See the|
|00003220| 20 74 65 63 68 6e 69 63 | 61 6c 20 72 65 66 65 72 | technic|al refer|
|00003230| 65 6e 63 65 20 6d 61 6e | 75 61 6c 20 66 6f 72 20 |ence man|ual for |
|00003240| 74 68 65 20 70 72 65 63 | 69 73 65 20 66 6f 72 6d |the prec|ise form|
|00003250| 75 6c 61 73 20 67 69 76 | 69 6e 67 20 74 68 65 0a |ulas giv|ing the.|
|00003260| 70 72 65 63 69 73 69 6f | 6e 20 6f 66 20 74 68 65 |precisio|n of the|
|00003270| 20 72 65 73 75 6c 74 2e | 0a 0a 54 68 65 20 73 65 | result.|..The se|
|00003280| 63 6f 6e 64 20 70 61 72 | 74 20 6f 66 20 74 68 65 |cond par|t of the|
|00003290| 20 50 41 52 49 20 70 68 | 69 6c 6f 73 6f 70 68 79 | PARI ph|ilosophy|
|000032a0| 20 69 73 20 74 68 61 74 | 20 50 41 52 49 20 6f 70 | is that| PARI op|
|000032b0| 65 72 61 74 69 6f 6e 73 | 20 61 72 65 20 69 6e 0a |erations| are in.|
|000032c0| 67 65 6e 65 72 61 6c 20 | 71 75 69 74 65 20 70 65 |general |quite pe|
|000032d0| 72 6d 69 73 73 69 76 65 | 2e 20 46 6f 72 20 69 6e |rmissive|. For in|
|000032e0| 73 74 61 6e 63 65 20 74 | 61 6b 69 6e 67 20 74 68 |stance t|aking th|
|000032f0| 65 20 65 78 70 6f 6e 65 | 6e 74 69 61 6c 20 6f 66 |e expone|ntial of|
|00003300| 20 61 20 76 65 63 74 6f | 72 0a 73 68 6f 75 6c 64 | a vecto|r.should|
|00003310| 20 6e 6f 74 20 6d 61 6b | 65 20 73 65 6e 73 65 2e | not mak|e sense.|
|00003320| 20 48 6f 77 65 76 65 72 | 2c 20 69 74 20 69 73 20 | However|, it is |
|00003330| 66 72 65 71 75 65 6e 74 | 20 74 68 61 74 20 61 20 |frequent| that a |
|00003340| 63 6f 6d 70 75 74 61 74 | 69 6f 6e 20 63 6f 6d 65 |computat|ion come|
|00003350| 73 0a 6f 75 74 20 77 69 | 74 68 20 61 20 72 65 73 |s.out wi|th a res|
|00003360| 75 6c 74 20 77 68 69 63 | 68 20 69 73 20 61 20 76 |ult whic|h is a v|
|00003370| 65 63 74 6f 72 20 77 69 | 74 68 20 6d 61 6e 79 20 |ector wi|th many |
|00003380| 63 6f 6d 70 6f 6e 65 6e | 74 73 2c 20 61 6e 64 20 |componen|ts, and |
|00003390| 6f 6e 65 20 77 61 6e 74 | 73 0a 74 6f 20 67 65 74 |one want|s.to get|
|000033a0| 20 74 68 65 20 65 78 70 | 6f 6e 65 6e 74 69 61 6c | the exp|onential|
|000033b0| 20 6f 66 20 65 61 63 68 | 20 6f 6e 65 2e 20 54 68 | of each| one. Th|
|000033c0| 69 73 20 63 6f 75 6c 64 | 20 65 61 73 69 6c 79 20 |is could| easily |
|000033d0| 62 65 20 64 6f 6e 65 0a | 65 69 74 68 65 72 20 75 |be done.|either u|
|000033e0| 6e 64 65 72 20 47 50 20 | 6f 72 20 69 6e 20 6c 69 |nder GP |or in li|
|000033f0| 62 72 61 72 79 20 6d 6f | 64 65 2c 20 62 75 74 20 |brary mo|de, but |
|00003400| 69 6e 20 66 61 63 74 20 | 50 41 52 49 20 61 73 73 |in fact |PARI ass|
|00003410| 75 6d 65 73 0a 74 68 61 | 74 20 74 68 69 73 20 69 |umes.tha|t this i|
|00003420| 73 20 65 78 61 63 74 6c | 79 20 77 68 61 74 20 79 |s exactl|y what y|
|00003430| 6f 75 20 77 61 6e 74 20 | 74 6f 20 64 6f 20 77 68 |ou want |to do wh|
|00003440| 65 6e 20 79 6f 75 20 74 | 61 6b 65 20 74 68 65 20 |en you t|ake the |
|00003450| 65 78 70 6f 6e 65 6e 74 | 69 61 6c 20 6f 66 20 61 |exponent|ial of a|
|00003460| 0a 76 65 63 74 6f 72 2c | 20 73 6f 20 6e 6f 20 77 |.vector,| so no w|
|00003470| 6f 72 6b 20 69 73 20 6e | 65 63 65 73 73 61 72 79 |ork is n|ecessary|
|00003480| 2e 20 4d 6f 73 74 20 74 | 72 61 6e 73 63 65 6e 64 |. Most t|ranscend|
|00003490| 65 6e 74 61 6c 20 66 75 | 6e 63 74 69 6f 6e 73 20 |ental fu|nctions |
|000034a0| 77 6f 72 6b 20 69 6e 20 | 74 68 65 0a 73 61 6d 65 |work in |the.same|
|000034b0| 20 77 61 79 20 28 73 65 | 65 20 63 68 61 70 74 65 | way (se|e chapte|
|000034c0| 72 20 33 20 66 6f 72 20 | 64 65 74 61 69 6c 73 29 |r 3 for |details)|
|000034d0| 2e 0a 0a 41 6e 20 61 6d | 62 69 67 75 69 74 79 20 |...An am|biguity |
|000034e0| 77 6f 75 6c 64 20 61 72 | 69 73 65 20 77 69 74 68 |would ar|ise with|
|000034f0| 20 73 71 75 61 72 65 20 | 6d 61 74 72 69 63 65 73 | square |matrices|
|00003500| 2e 20 50 41 52 49 20 61 | 6c 77 61 79 73 20 63 6f |. PARI a|lways co|
|00003510| 6e 73 69 64 65 72 73 0a | 74 68 61 74 20 79 6f 75 |nsiders.|that you|
|00003520| 20 77 61 6e 74 20 74 6f | 20 64 6f 20 63 6f 6d 70 | want to| do comp|
|00003530| 6f 6e 65 6e 74 77 69 73 | 65 20 66 75 6e 63 74 69 |onentwis|e functi|
|00003540| 6f 6e 20 65 76 61 6c 75 | 61 74 69 6f 6e 2c 20 68 |on evalu|ation, h|
|00003550| 65 6e 63 65 20 74 6f 20 | 67 65 74 0a 66 6f 72 20 |ence to |get.for |
|00003560| 65 78 61 6d 70 6c 65 20 | 74 68 65 20 65 78 70 6f |example |the expo|
|00003570| 6e 65 6e 74 69 61 6c 20 | 6f 66 20 61 20 73 71 75 |nential |of a squ|
|00003580| 61 72 65 20 6d 61 74 72 | 69 78 20 79 6f 75 20 77 |are matr|ix you w|
|00003590| 6f 75 6c 64 20 6e 65 65 | 64 20 74 6f 20 75 73 65 |ould nee|d to use|
|000035a0| 0a 61 20 66 75 6e 63 74 | 69 6f 6e 20 77 69 74 68 |.a funct|ion with|
|000035b0| 20 61 20 64 69 66 66 65 | 72 65 6e 74 20 6e 61 6d | a diffe|rent nam|
|000035c0| 65 2c 20 6d 61 74 65 78 | 70 20 66 6f 72 20 69 6e |e, matex|p for in|
|000035d0| 73 74 61 6e 63 65 2e 20 | 49 6e 20 74 68 65 20 70 |stance. |In the p|
|000035e0| 72 65 73 65 6e 74 0a 76 | 65 72 73 69 6f 6e 20 31 |resent.v|ersion 1|
|000035f0| 2e 33 35 2c 20 74 68 69 | 73 20 69 73 20 6e 6f 74 |.35, thi|s is not|
|00003600| 20 79 65 74 20 69 6d 70 | 6c 65 6d 65 6e 74 65 64 | yet imp|lemented|
|00003610| 2e 20 53 65 65 20 68 6f | 77 65 76 65 72 20 74 68 |. See ho|wever th|
|00003620| 65 20 70 72 6f 67 72 61 | 6d 20 69 6e 20 41 70 70 |e progra|m in App|
|00003630| 65 6e 64 69 78 20 43 2c | 0a 77 68 69 63 68 20 69 |endix C,|.which i|
|00003640| 73 20 61 20 66 69 72 73 | 74 20 61 74 74 65 6d 70 |s a firs|t attemp|
|00003650| 74 20 66 6f 72 20 74 68 | 69 73 20 70 61 72 74 69 |t for th|is parti|
|00003660| 63 75 6c 61 72 20 66 75 | 6e 63 74 69 6f 6e 2e 0a |cular fu|nction..|
|00003670| 0a 54 68 65 20 61 76 61 | 69 6c 61 62 6c 65 20 6f |.The ava|ilable o|
|00003680| 70 65 72 61 74 69 6f 6e | 73 20 61 6e 64 20 66 75 |peration|s and fu|
|00003690| 6e 63 74 69 6f 6e 73 20 | 69 6e 20 50 41 52 49 20 |nctions |in PARI |
|000036a0| 61 72 65 20 64 65 73 63 | 72 69 62 65 64 20 69 6e |are desc|ribed in|
|000036b0| 20 64 65 74 61 69 6c 0a | 69 6e 20 63 68 61 70 74 | detail.|in chapt|
|000036c0| 65 72 20 33 2e 20 48 65 | 72 65 20 69 73 20 61 20 |er 3. He|re is a |
|000036d0| 62 72 69 65 66 20 73 75 | 6d 6d 61 72 79 3a 0a 0a |brief su|mmary:..|
|000036e0| 5c 73 75 62 73 65 63 7b | 53 74 61 6e 64 61 72 64 |\subsec{|Standard|
|000036f0| 20 6f 70 65 72 61 74 69 | 6f 6e 73 7d 2e 0a 0a 54 | operati|ons}...T|
|00003700| 68 65 20 66 6f 75 72 20 | 73 74 61 6e 64 61 72 64 |he four |standard|
|00003710| 20 6f 70 65 72 61 74 6f | 72 73 20 24 2b 24 2c 20 | operato|rs $+$, |
|00003720| 24 2d 24 2c 20 24 2a 24 | 2c 20 24 2f 24 20 6f 66 |$-$, $*$|, $/$ of|
|00003730| 20 63 6f 75 72 73 65 20 | 65 78 69 73 74 2e 20 49 | course |exist. I|
|00003740| 74 20 73 68 6f 75 6c 64 | 0a 62 65 20 6f 6e 63 65 |t should|.be once|
|00003750| 20 6d 6f 72 65 20 65 6d | 70 68 61 73 69 7a 65 64 | more em|phasized|
|00003760| 20 74 68 61 74 20 64 69 | 76 69 73 69 6f 6e 20 69 | that di|vision i|
|00003770| 73 2c 20 61 73 20 66 61 | 72 20 61 73 20 69 74 20 |s, as fa|r as it |
|00003780| 63 61 6e 2c 20 61 6e 20 | 65 78 61 63 74 0a 6f 70 |can, an |exact.op|
|00003790| 65 72 61 74 69 6f 6e 20 | 28 24 34 24 20 64 69 76 |eration |($4$ div|
|000037a0| 69 64 65 64 20 62 79 20 | 24 33 24 20 67 69 76 65 |ided by |$3$ give|
|000037b0| 73 20 24 28 34 2f 33 29 | 24 29 2e 20 49 6e 20 61 |s $(4/3)|$). In a|
|000037c0| 64 64 69 74 69 6f 6e 20 | 74 6f 20 74 68 69 73 2c |ddition |to this,|
|000037d0| 20 6f 70 65 72 61 74 69 | 6f 6e 73 0a 6f 6e 20 69 | operati|ons.on i|
|000037e0| 6e 74 65 67 65 72 73 20 | 6f 72 20 70 6f 6c 79 6e |ntegers |or polyn|
|000037f0| 6f 6d 69 61 6c 73 2c 20 | 6c 69 6b 65 20 24 5c 62 |omials, |like $\b|
|00003800| 61 63 6b 73 6c 61 73 68 | 20 24 20 28 65 75 63 6c |ackslash| $ (eucl|
|00003810| 69 64 65 61 6e 20 64 69 | 76 69 73 69 6f 6e 29 2c |idean di|vision),|
|00003820| 0a 24 5c 25 24 20 28 65 | 75 63 6c 69 64 65 61 6e |.$\%$ (e|uclidean|
|00003830| 20 72 65 6d 61 69 6e 64 | 65 72 29 20 65 78 69 73 | remaind|er) exis|
|00003840| 74 2e 20 54 68 65 72 65 | 20 69 73 20 61 6c 73 6f |t. There| is also|
|00003850| 20 74 68 65 20 65 78 70 | 6f 6e 65 6e 74 69 61 74 | the exp|onentiat|
|00003860| 69 6f 6e 0a 6f 70 65 72 | 61 74 6f 72 20 24 5c 68 |ion.oper|ator $\h|
|00003870| 61 74 7b 5c 20 7d 24 2c | 20 77 68 65 6e 20 74 68 |at{\ }$,| when th|
|00003880| 65 20 65 78 70 6f 6e 65 | 6e 74 20 69 73 20 6f 66 |e expone|nt is of|
|00003890| 20 74 79 70 65 20 69 6e | 74 65 67 65 72 0a 28 6f | type in|teger.(o|
|000038a0| 74 68 65 72 77 69 73 65 | 20 69 74 20 69 73 20 63 |therwise| it is c|
|000038b0| 6f 6e 73 69 64 65 72 65 | 64 20 61 73 20 61 20 74 |onsidere|d as a t|
|000038c0| 72 61 6e 73 63 65 6e 64 | 65 6e 74 61 6c 20 66 75 |ranscend|ental fu|
|000038d0| 6e 63 74 69 6f 6e 29 2e | 0a 46 69 6e 61 6c 6c 79 |nction).|.Finally|
|000038e0| 2c 20 74 68 65 20 6c 6f | 67 69 63 61 6c 20 6f 70 |, the lo|gical op|
|000038f0| 65 72 61 74 6f 72 73 20 | 24 5c 26 5c 26 24 20 28 |erators |$\&\&$ (|
|00003900| 7b 5c 74 74 20 61 6e 64 | 7d 20 6f 70 65 72 61 74 |{\tt and|} operat|
|00003910| 6f 72 29 2c 20 24 7c 5c | 2c 7c 24 20 28 7b 5c 74 |or), $|\|,|$ ({\t|
|00003920| 74 20 6f 72 7d 0a 6f 70 | 65 72 61 74 6f 72 29 20 |t or}.op|erator) |
|00003930| 65 78 69 73 74 2c 20 67 | 69 76 69 6e 67 20 61 73 |exist, g|iving as|
|00003940| 20 72 65 73 75 6c 74 73 | 20 31 20 28 74 72 75 65 | results| 1 (true|
|00003950| 29 20 6f 72 20 30 20 28 | 66 61 6c 73 65 29 2e 20 |) or 0 (|false). |
|00003960| 4e 6f 74 65 20 74 68 61 | 74 20 74 68 65 0a 43 2d |Note tha|t the.C-|
|00003970| 73 79 6e 74 61 78 20 24 | 5c 26 24 20 61 6e 64 20 |syntax $|\&$ and |
|00003980| 24 7c 24 20 69 73 20 61 | 6c 73 6f 20 61 63 63 65 |$|$ is a|lso acce|
|00003990| 70 74 65 64 20 61 73 20 | 61 20 73 79 6e 6f 6e 79 |pted as |a synony|
|000039a0| 6d 2e 20 48 6f 77 65 76 | 65 72 2c 20 74 68 65 72 |m. Howev|er, ther|
|000039b0| 65 20 69 73 0a 6e 6f 20 | 62 69 74 77 69 73 65 20 |e is.no |bitwise |
|000039c0| 7b 5c 74 74 20 61 6e 64 | 7d 20 6f 72 20 7b 5c 74 |{\tt and|} or {\t|
|000039d0| 74 20 6f 72 7d 2e 0a 0a | 5c 73 75 62 73 65 63 7b |t or}...|\subsec{|
|000039e0| 43 6f 6e 76 65 72 73 69 | 6f 6e 73 20 61 6e 64 20 |Conversi|ons and |
|000039f0| 73 69 6d 69 6c 61 72 20 | 66 75 6e 63 74 69 6f 6e |similar |function|
|00003a00| 73 7d 2e 0a 0a 4d 61 6e | 79 20 63 6f 6e 76 65 72 |s}...Man|y conver|
|00003a10| 73 69 6f 6e 20 66 75 6e | 63 74 69 6f 6e 73 20 61 |sion fun|ctions a|
|00003a20| 72 65 20 61 76 61 69 6c | 61 62 6c 65 20 74 6f 20 |re avail|able to |
|00003a30| 63 6f 6e 76 65 72 74 20 | 62 65 74 77 65 65 6e 20 |convert |between |
|00003a40| 64 69 66 66 65 72 65 6e | 74 0a 74 79 70 65 73 2e |differen|t.types.|
|00003a50| 20 46 6f 72 20 65 78 61 | 6d 70 6c 65 20 66 6c 6f | For exa|mple flo|
|00003a60| 6f 72 2c 20 63 65 69 6c | 69 6e 67 2c 20 72 6f 75 |or, ceil|ing, rou|
|00003a70| 6e 64 69 6e 67 2c 20 74 | 72 75 6e 63 61 74 69 6f |nding, t|runcatio|
|00003a80| 6e 2c 20 65 74 63 5c 64 | 6f 74 73 2e 0a 4f 74 68 |n, etc\d|ots..Oth|
|00003a90| 65 72 20 73 69 6d 70 6c | 65 20 66 75 6e 63 74 69 |er simpl|e functi|
|00003aa0| 6f 6e 73 20 61 72 65 20 | 69 6e 63 6c 75 64 65 64 |ons are |included|
|00003ab0| 20 6c 69 6b 65 20 72 65 | 61 6c 20 61 6e 64 20 69 | like re|al and i|
|00003ac0| 6d 61 67 69 6e 61 72 79 | 20 70 61 72 74 2c 0a 63 |maginary| part,.c|
|00003ad0| 6f 6e 6a 75 67 61 74 69 | 6f 6e 2c 0a 6e 6f 72 6d |onjugati|on,.norm|
|00003ae0| 2c 20 61 62 73 6f 6c 75 | 74 65 20 76 61 6c 75 65 |, absolu|te value|
|00003af0| 2c 20 63 68 61 6e 67 69 | 6e 67 20 70 72 65 63 69 |, changi|ng preci|
|00003b00| 73 69 6f 6e 20 6f 72 20 | 63 72 65 61 74 69 6e 67 |sion or |creating|
|00003b10| 20 61 6e 20 69 6e 74 65 | 67 65 72 6d 6f 64 20 6f | an inte|germod o|
|00003b20| 72 20 61 0a 70 6f 6c 79 | 6d 6f 64 2e 0a 0a 5c 73 |r a.poly|mod...\s|
|00003b30| 75 62 73 65 63 7b 54 72 | 61 6e 73 63 65 6e 64 65 |ubsec{Tr|anscende|
|00003b40| 6e 74 61 6c 20 66 75 6e | 63 74 69 6f 6e 73 7d 2e |ntal fun|ctions}.|
|00003b50| 0a 0a 54 68 65 79 20 75 | 73 75 61 6c 6c 79 20 6f |..They u|sually o|
|00003b60| 70 65 72 61 74 65 20 6f | 6e 20 61 6e 79 20 6f 62 |perate o|n any ob|
|00003b70| 6a 65 63 74 20 69 6e 20 | 24 5c 42 62 62 20 43 24 |ject in |$\Bbb C$|
|00003b80| 2c 20 61 6e 64 20 73 6f | 6d 65 20 61 6c 73 6f 20 |, and so|me also |
|00003b90| 6f 6e 20 24 70 24 2d 61 | 64 69 63 73 2e 0a 54 68 |on $p$-a|dics..Th|
|00003ba0| 65 20 6c 69 73 74 20 69 | 73 20 65 76 65 72 65 78 |e list i|s everex|
|00003bb0| 70 61 6e 64 69 6e 67 20 | 61 6e 64 20 6f 66 20 63 |panding |and of c|
|00003bc0| 6f 75 72 73 65 20 63 6f | 6e 74 61 69 6e 73 20 61 |ourse co|ntains a|
|00003bd0| 6c 6c 20 74 68 65 20 65 | 6c 65 6d 65 6e 74 61 72 |ll the e|lementar|
|00003be0| 79 0a 66 75 6e 63 74 69 | 6f 6e 73 2c 20 70 6c 75 |y.functi|ons, plu|
|00003bf0| 73 20 61 6c 72 65 61 64 | 79 20 61 20 6e 75 6d 62 |s alread|y a numb|
|00003c00| 65 72 20 6f 66 20 6f 74 | 68 65 72 73 2e 20 52 65 |er of ot|hers. Re|
|00003c10| 63 61 6c 6c 20 74 68 61 | 74 20 62 79 20 65 78 74 |call tha|t by ext|
|00003c20| 65 6e 73 69 6f 6e 2c 0a | 50 41 52 49 20 75 73 75 |ension,.|PARI usu|
|00003c30| 61 6c 6c 79 20 61 6c 6c | 6f 77 73 20 61 20 74 72 |ally all|ows a tr|
|00003c40| 61 6e 73 63 65 6e 64 65 | 6e 74 61 6c 20 66 75 6e |anscende|ntal fun|
|00003c50| 63 74 69 6f 6e 20 74 6f | 20 6f 70 65 72 61 74 65 |ction to| operate|
|00003c60| 20 63 6f 6d 70 6f 6e 65 | 6e 74 77 69 73 65 0a 6f | compone|ntwise.o|
|00003c70| 6e 20 76 65 63 74 6f 72 | 73 20 6f 72 20 6d 61 74 |n vector|s or mat|
|00003c80| 72 69 63 65 73 2e 0a 0a | 5c 73 75 62 73 65 63 7b |rices...|\subsec{|
|00003c90| 41 72 69 74 68 6d 65 74 | 69 63 20 66 75 6e 63 74 |Arithmet|ic funct|
|00003ca0| 69 6f 6e 73 7d 2e 0a 0a | 41 70 61 72 74 20 66 72 |ions}...|Apart fr|
|00003cb0| 6f 6d 20 61 20 66 65 77 | 20 6c 69 6b 65 20 74 68 |om a few| like th|
|00003cc0| 65 20 66 61 63 74 6f 72 | 69 61 6c 20 66 75 6e 63 |e factor|ial func|
|00003cd0| 74 69 6f 6e 20 6f 72 20 | 74 68 65 20 66 69 62 6f |tion or |the fibo|
|00003ce0| 6e 61 63 63 69 0a 6e 75 | 6d 62 65 72 73 2c 20 74 |nacci.nu|mbers, t|
|00003cf0| 68 65 73 65 20 61 72 65 | 20 66 75 6e 63 74 69 6f |hese are| functio|
|00003d00| 6e 73 20 77 68 69 63 68 | 20 65 78 70 6c 69 63 69 |ns which| explici|
|00003d10| 74 6c 79 20 75 73 65 20 | 74 68 65 20 70 72 69 6d |tly use |the prim|
|00003d20| 65 20 66 61 63 74 6f 72 | 0a 64 65 63 6f 6d 70 6f |e factor|.decompo|
|00003d30| 73 69 74 69 6f 6e 20 6f | 66 20 69 6e 74 65 67 65 |sition o|f intege|
|00003d40| 72 73 2e 20 54 68 65 20 | 73 74 61 6e 64 61 72 64 |rs. The |standard|
|00003d50| 20 66 75 6e 63 74 69 6f | 6e 73 20 61 72 65 20 69 | functio|ns are i|
|00003d60| 6e 63 6c 75 64 65 64 2e | 0a 49 6e 20 74 68 65 20 |ncluded.|.In the |
|00003d70| 70 72 65 73 65 6e 74 20 | 76 65 72 73 69 6f 6e 20 |present |version |
|00003d80| 31 2e 33 35 2c 20 61 20 | 70 72 69 6d 69 74 69 76 |1.35, a |primitiv|
|00003d90| 65 2c 20 62 75 74 20 75 | 73 65 66 75 6c 20 76 65 |e, but u|seful ve|
|00003da0| 72 73 69 6f 6e 20 6f 66 | 20 4c 65 6e 73 74 72 61 |rsion of| Lenstra|
|00003db0| 27 73 0a 45 6c 6c 69 70 | 74 69 63 20 43 75 72 76 |'s.Ellip|tic Curv|
|00003dc0| 65 20 4d 65 74 68 6f 64 | 20 28 45 43 4d 29 20 68 |e Method| (ECM) h|
|00003dd0| 61 73 20 62 65 65 6e 20 | 69 6d 70 6c 65 6d 65 6e |as been |implemen|
|00003de0| 74 65 64 2e 0a 4d 6f 72 | 65 20 73 6f 70 68 69 73 |ted..Mor|e sophis|
|00003df0| 74 69 63 61 74 65 64 20 | 66 75 6e 63 74 69 6f 6e |ticated |function|
|00003e00| 73 20 61 72 65 20 69 6d | 70 6c 65 6d 65 6e 74 65 |s are im|plemente|
|00003e10| 64 2c 20 6c 69 6b 65 20 | 66 69 6e 64 69 6e 67 20 |d, like |finding |
|00003e20| 69 6e 74 65 67 72 61 6c | 20 62 61 73 65 73 0a 61 |integral| bases.a|
|00003e30| 6e 64 20 64 69 73 63 72 | 69 6d 69 6e 61 6e 74 73 |nd discr|iminants|
|00003e40| 20 6f 66 20 6e 75 6d 62 | 65 72 20 66 69 65 6c 64 | of numb|er field|
|00003e50| 73 2c 20 63 6f 6d 70 75 | 74 69 6e 67 20 63 6c 61 |s, compu|ting cla|
|00003e60| 73 73 20 6e 75 6d 62 65 | 72 73 20 61 6e 64 20 72 |ss numbe|rs and r|
|00003e70| 65 67 75 6c 61 74 6f 72 | 73 0a 28 66 6f 72 20 71 |egulator|s.(for q|
|00003e80| 75 61 64 72 61 74 69 63 | 20 66 69 65 6c 64 73 20 |uadratic| fields |
|00003e90| 6f 6e 6c 79 29 2c 20 61 | 6e 64 20 61 6c 73 6f 20 |only), a|nd also |
|00003ea0| 6d 61 6e 79 20 66 75 6e | 63 74 69 6f 6e 73 20 64 |many fun|ctions d|
|00003eb0| 65 61 6c 69 6e 67 20 77 | 69 74 68 0a 65 6c 6c 69 |ealing w|ith.elli|
|00003ec0| 70 74 69 63 20 63 75 72 | 76 65 73 20 6f 76 65 72 |ptic cur|ves over|
|00003ed0| 20 24 5c 42 62 62 20 51 | 24 20 6f 72 20 6f 76 65 | $\Bbb Q|$ or ove|
|00003ee0| 72 20 6c 6f 63 61 6c 20 | 66 69 65 6c 64 73 2e 0a |r local |fields..|
|00003ef0| 0a 5c 73 75 62 73 65 63 | 7b 4f 74 68 65 72 20 66 |.\subsec|{Other f|
|00003f00| 75 6e 63 74 69 6f 6e 73 | 7d 2e 0a 0a 51 75 69 74 |unctions|}...Quit|
|00003f10| 65 20 61 20 6e 75 6d 62 | 65 72 20 6f 66 20 6f 74 |e a numb|er of ot|
|00003f20| 68 65 72 20 66 75 6e 63 | 74 69 6f 6e 73 20 64 65 |her func|tions de|
|00003f30| 61 6c 69 6e 67 20 77 69 | 74 68 20 70 6f 6c 79 6e |aling wi|th polyn|
|00003f40| 6f 6d 69 61 6c 73 20 28 | 65 2e 67 2e 20 66 69 6e |omials (|e.g. fin|
|00003f50| 64 69 6e 67 0a 63 6f 6d | 70 6c 65 78 20 6f 72 20 |ding.com|plex or |
|00003f60| 24 70 24 2d 61 64 69 63 | 20 72 6f 6f 74 73 2c 20 |$p$-adic| roots, |
|00003f70| 66 61 63 74 6f 72 69 6e | 67 2c 5c 64 6f 74 73 29 |factorin|g,\dots)|
|00003f80| 2c 20 70 6f 77 65 72 20 | 73 65 72 69 65 73 0a 28 |, power |series.(|
|00003f90| 65 2e 67 2e 20 73 75 62 | 73 74 69 74 75 74 69 6f |e.g. sub|stitutio|
|00003fa0| 6e 2c 20 72 65 76 65 72 | 73 69 6f 6e 29 2c 0a 6c |n, rever|sion),.l|
|00003fb0| 69 6e 65 61 72 20 61 6c | 67 65 62 72 61 20 28 65 |inear al|gebra (e|
|00003fc0| 2e 67 2e 20 64 65 74 65 | 72 6d 69 6e 61 6e 74 2c |.g. dete|rminant,|
|00003fd0| 20 63 68 61 72 61 63 74 | 65 72 69 73 74 69 63 20 | charact|eristic |
|00003fe0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 2c 20 6c 69 6e 65 |polynomi|al, line|
|00003ff0| 61 72 0a 73 79 73 74 65 | 6d 73 29 2c 20 61 6e 64 |ar.syste|ms), and|
|00004000| 20 64 69 66 66 65 72 65 | 6e 74 20 6b 69 6e 64 73 | differe|nt kinds|
|00004010| 20 6f 66 20 72 65 63 75 | 72 73 69 6f 6e 73 20 61 | of recu|rsions a|
|00004020| 72 65 20 61 6c 73 6f 20 | 69 6e 63 6c 75 64 65 64 |re also |included|
|00004030| 2e 20 49 6e 20 61 64 64 | 69 74 69 6f 6e 2c 0a 73 |. In add|ition,.s|
|00004040| 74 61 6e 64 61 72 64 20 | 6e 75 6d 65 72 69 63 61 |tandard |numerica|
|00004050| 6c 20 61 6e 61 6c 79 73 | 69 73 20 72 6f 75 74 69 |l analys|is routi|
|00004060| 6e 65 73 20 6c 69 6b 65 | 20 52 6f 6d 62 65 72 67 |nes like| Romberg|
|00004070| 20 69 6e 74 65 67 72 61 | 74 69 6f 6e 20 28 6f 70 | integra|tion (op|
|00004080| 65 6e 20 6f 72 20 63 6c | 6f 73 65 64 2c 0a 6f 6e |en or cl|osed,.on|
|00004090| 20 61 20 66 69 6e 69 74 | 65 20 6f 72 20 69 6e 66 | a finit|e or inf|
|000040a0| 69 6e 69 74 65 20 69 6e | 74 65 72 76 61 6c 29 2c |inite in|terval),|
|000040b0| 20 72 65 61 6c 20 72 6f | 6f 74 20 66 69 6e 64 69 | real ro|ot findi|
|000040c0| 6e 67 20 77 68 65 6e 20 | 74 68 65 20 72 6f 6f 74 |ng when |the root|
|000040d0| 20 69 73 20 62 72 61 63 | 6b 65 74 65 64 2c 0a 70 | is brac|keted,.p|
|000040e0| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 69 6e 74 65 72 70 |olynomia|l interp|
|000040f0| 6f 6c 61 74 69 6f 6e 2c | 20 73 65 72 69 65 73 20 |olation,| series |
|00004100| 61 63 63 65 6c 65 72 61 | 74 69 6f 6e 2c 20 61 6e |accelera|tion, an|
|00004110| 64 20 70 6c 6f 74 74 69 | 6e 67 20 61 72 65 20 69 |d plotti|ng are i|
|00004120| 6e 63 6c 75 64 65 64 2e | 0a 53 65 65 20 74 68 65 |ncluded.|.See the|
|00004130| 20 6c 61 73 74 20 73 65 | 63 74 69 6f 6e 73 20 6f | last se|ctions o|
|00004140| 66 20 63 68 61 70 74 65 | 72 20 33 20 66 6f 72 20 |f chapte|r 3 for |
|00004150| 64 65 74 61 69 6c 73 2e | 0a 0a 5c 76 66 69 6c 6c |details.|..\vfill|
|00004160| 5c 65 6a 65 63 74 0a 0a | 0a 0a 0a 0a 0a 0a 0a 0a |\eject..|........|
+--------+-------------------------+-------------------------+--------+--------+